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ABSTRACT OF THE DISSERTATION
Multi-scale Structure-function Analysis of Mitochondrial Network Morphology and

Respiratory State in Budding Yeast

By

Swee Siong Lim

Doctor of Philosophy in Biomedical Engineering

University of California, Irvine, 2015

Assistant Professor Susanne Rafelski, Chair

Remodeling of the mitochondrial network in response to metabolism involves changes

to mitochondrial structure from the ultrastructure to the cellular level. Morphological

changes in dysfunctional mitochondria that manifest in diseases such as Parkinson’s and

Leber’s hereditary optic neuropathy drive the need to have a ’systems’ level understand-

ing of the relationship between mitochondrial structure and function. However, an inte-

grated, quantitative understanding of the mechanisms linking the changes of structure

in response to functional state, and vice versa, is lacking in the field. We developed a

multi-scale, quantitative image analysis pipeline and database to simultaneously extract

structural features and functional markers of mitochondrial networks for further anal-

ysis. We applied this pipeline to the budding yeast, Saccharomyces cerevisiae, which

we grew in different carbon sources to achieve distinct respiratory states. Our system

was able to quantitatively show that the spatial distribution of mitochondrial membrane

potential (ΔΨ, an indicator of mitochondrial function) within individual mitochondrial

tubules was nonrandom and dependent on the respiratory state of the cell. These dif-

ferences were consistent with known alterations to the cristae of the mitochondria. We

next investigated the relationship between the connectivity of the mitochondrial net-

work and ΔΨ. Network connectivity is generated by fission and fusion events between

xii



individual tubules within the mitochondrial network. Mitochondrial fusion and bioen-

ergetic status are known to be interdependent. We were thus surprised that nowhere

in our exhaustive network measurement-based analysis was ΔΨ upregulated in more

highly connected networks or network regions as we had predicted. We expect that dy-

namic data will be needed to detect local regions of the network undergoing fusion dy-

namics and that it may be these highly dynamic regions of the network that could be be

upregulated in ΔΨ. We also investigated the asymmetry of ΔΨ between the mother and

daughter bud (future daughter cell) and found that ΔΨwas maintained at a higher level

in the daughter throughout the cell division cycle. We detected an increasing gradient in

the distribution of ΔΨ along the mother-daughter axis and speculate that this might in-

dicate an increasing ΔΨ-dependent process in the direction of the daughter bud during

cell growth.
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Chapter 1

Introduction
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1.1 Mitochondrial structure

Since their discovery in the mid 19th century, mitochondria have been one of the most

studied organelles in the cell. The name mitochondria belies the morphological descrip-

tion of these organelles: they have a granular appearance, hence the word ’chondros’

in Greek and resemble threads, hence the word ’mitos’ in Greek [1]. It is thus appropri-

ate to begin with an overview of the structural features of this ancient organelle whose

study has led to some of the most fundamental understanding of basic biology since its

discovery.

The organelle has a tube like cross section with a width on the order of ~0.5 to 1 µm and

a total length ranging from the order of ~10 to 1000 µm, depending on the cell and or-

ganism. Mitochondria are believed to have a bacterial origin [2]. The remnants of the

bacterial genome found in mitochondria are known as mitochondrial DNA (mtDNA).

Only about 1% of mitochondrial proteins are encoded by the mtDNA. The rest are en-

coded by the nuclear genome, synthesized in the cytosol and imported into mitochon-

dria via membrane bound translocases. The proteins that are encoded by mtDNA are

mainly involved in cellular respiration, in particular those involved in the transfer of

electrons and the generation of ATP [3].

Mitochondria consist of two membranes; an inner mitochondrial membrane (IMM)

which is impermeable to most ions and metabolites enveloping a matrix compartment

and an outer membrane (OM) that is freely diffusible to most molecules below 5000 Da.

Within the IMM two distinct domains exist, and inner boundary membrane (IBM) and

the cristae membrane. The IBM closely parallels the outer membrane while the cristae

forms invaginations of the inner membrane into the matrix space. The cristae membrane

possess a distinct substructure known as cristae junctions. These are narrow ring like

structures that are believed to subcompartmentalize the inner membrane into the cristae

2



membrane domain and the inner boundary membrane domain [4]. Collectively the

various membranes and substructures at this scale are known as the ultrastructure of the

mitochondria. The inner membrane has an extremely high protein to lipid ratio (75:25)

compared to other biological membranes. The reason for this becomes obvious when

one realizes that it contains various protein complexes which are involved in oxidative

phosphorylation, metabolite exchange, iron-sulfur biogenesis [5], protein lipid synthesis

[6], import of nuclear encoded proteins required in biogenesis [7] and remodeling of the

network as well as apoptotic [8] signaling factors. We detail the various functions that

involve mitochondria ultrastructure components and beyond in the next section.

1.2 Mitochondrial function

The most well known role of mitochondria as energy production centers of the cell was

elucidated by the pioneering work into the respiratory chain, oxidative phosphorylation

process (OXPHOS) and chemiosmotic theory in the 50’s and 60’s [9, 10]. Their role in cel-

lular energy production begins with the oxidation of the small molecule pyruvate, fatty

acids and amino acids via the citric acid cycle (TCA) and β-oxidation, both of which take

place in the matrix space of mitochondria. The reducing agents (NADH and FADH2)

generated from the oxidation of these molecules are reoxidized by donating their elec-

trons to the mitochondrial electron transport chain (ETC) and ultimately reduce oxygen

to water. The ETC is concentrated in the cristae membrane domain. The ETC consists

of a series of increasingly electronegative enzyme complexes, and the transfer of elec-

trons through these complexes releases energy that is used to translocate protons from

the matrix to the intermembrane space (IMS), generating a proton gradient, known as

the proton motive force (PMF). The PMF is used by the F1-F0 ATP synthase (complex

V) to generate adenosine triphosphate (ATP) in the matrix, which is subsequently trans-
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ported via an antiporter to the cytosol to power cellular processes. The PMF consists of

an electric potential (ΔΨ) and a chemical potential (pH). Inhibition of respiratory chain

complexes results in a decrease of ΔΨ [11].

ΔΨ is an important measure of the functional state of mitochondria. In addition to its

role in providing the necessary electrochemical gradient for ATP synthesis, ΔΨ is nec-

essary for the non-bioenergetic related roles that mitochondria are involved in. For ex-

ample the import of the vast majority of nuclear encoded proteins which are synthe-

sized in the cytosol and translocated into the matrix are known to be dependent on ΔΨ

[7, 12]. ΔΨ also plays a role during remodeling of the mitochondrial network in a pro-

cess known as mitochondrial dynamics. In addition we have already mentioned that mi-

tochondria are also involved in lipid and iron-sulfur synthesis, cell signaling and apopto-

sis. These non-bioenergetic related processes, together with those involved in oxidative

phosphorylation require changes to the morphology of the organelle at the ultrastruc-

ture and larger scales in order to ensure an optimum level of metabolite flux between

the various compartments in the cell.

1.3 The link between structure and function in mitochon-

drial remodeling

Mitochondria provide an illustrative example of how changes to the structure of the or-

ganelle are coordinated with the functional state of the cell. When respiration require-

ments are high, the cristae in mitochondria exhibit a ’condensed’ state where the matrix

volume is reduced and the cristae volume is enlarged. In contrast, when respiration re-

quirements are low, the matrix space expands and cristae display small volumes (’ortho-

dox state’) [13]. It is believed that these changes are to facilitate an optimal diffusion of

4



metabolites during oxidative phosphorylation. In addition to changes that are related to

the bioenergetic needs of the cell, mitochondria exhibit structural changes due to apop-

totic signaling and biogenesis. During apoptosis, the apoptotic factor cytochrome c is re-

leased from the inner cristae compartment into the cytosol [14]. This involves the open-

ing of the cristae junctions via destabilization of OPA1, which is a protein that tethers

the cristae junction. The shape of the cristae junction structure is also theorized to form a

’valve’ that funnels inward flow of respiratory complexes while inhibiting back diffusion

of these complexes back out into the inner boundary membrane, resulting in an enrich-

ment of these complexes in the intra cristae membrane volume [15].

The reversible nature of cristae remodeling in response to changes in cellular needs re-

quire fission and fusion of the mitochondria [4]. Early bioenergetic studies were most

often done on isolated mitochondria, hence dynamic changes to the network structure

and their importance to the proper functioning of the mitochondrial unit were not ap-

preciated until relatively recently. Since the turn of the century, several important stud-

ies have demonstrated in vivo that mitochondrial networks undergo reversible and dy-

namic changes in response to different energy substrates, providing evidence that mi-

tochondrial structure is intimately linked to its functional state [16–19]. Mitochondrial

networks in yeast display an increased volume density as a proportion of the total cell

volume when grown in non-fermentable carbon sources [20]. Mitochondria in mam-

malian cells display a hyperfused state when they are exposed to stress factors such as

starvation [21]. In addition to been necessary for reversible cristae remodeling, a crucial

role for mitochondrial dynamics is posited by the mitochondrial quality control model.

In this model, overall mitochondrial quality is maintained by continual fission and se-

lective fusion of tubules within the network [22]. In this mechanism segments of mito-

chondrial tubules are separated (undergo fission) from the network and selectively fuse

back to the network according to a threshold level of ΔΨ. The rates of fission and fusion

in mitochondrial networks are balanced at steady state [23]. Mitochondrial tubules that
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are unable to meet this threshold are targeted for disposal via the autophagic machinery,

a process known as mitophagy.

During mitosis in mammalian somatic cells, mitochondrial morphology is coordinated

with the cell cycle in order to ensure an even distribution of mitochondrial content to

daughter cells. During the transition from G2 to M phase, the mitochondrial network

changes to a highly fragmented state that is distributed evenly across the soma. This

ensures that mitochondria will be evenly distributed to each of the daughter cells after

mitosis. In yeast, mitochondria are transported to the bud via the actin cytoskeleton and

the mitochondrial content in the bud is actively monitored [24].

1.4 Pathological consequences of mitochondrial damage

Mitochondrial quality control primarily serves to protect the overall health of the net-

work by mitigating accumulation of damaged components due to reactive oxygen

species (ROS) generated during the OXPHOS process. ROS is generated from excess

electrons at the complexes located in the ETC. While some endogenous levels of ROS

is normal and plays a role in cell signaling [25] excessive ROS production can result in

oxidative damage, alterations to the mtDNA, reduced ΔΨ as well as other cell dysfunc-

tion. Oxidative degradation of cellular proteins, lipids and DNA by ROS are theorized

to be a driver of the aging process [26] and associated degenerative diseases [27]. It has

been proposed that aged related diseases result from somatic accumulation of damaged

mtDNA which are exposed to much higher levels of ROS due to its proximity to the

respiratory complexes [28]. Studies in mice heterozygous for a mitochondrial matrix

located antioxidant enzyme, MnSOD (superoxide dismutase) had lifelong reduced levels

of these enzymes and showed increased oxidative damage to nuclear DNA and a four

fold increase in tumor rates [29]. These mice had reduced liver cell ΔΨ and respiration
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levels along with greatly increased levels of lipid peroxidation damage [30]. The mor-

phology of mitochondria exposed to oxidative stress tend to show a fragmented and

swollen shape, and their ultrastructure display fewer numbers of cristae [31].

Another clinically relevant example of how damaged mitochondria result in pathogenic

signaling is in defects to the mitochondrial autophagy machinery. Mitochondria that ac-

cumulate excessive damage are normally targeted for autophagy by accumulation of the

protein PINK1 on the outer membrane. PINK1 then recruits the cytosolic protein Parkin,

which then induces a series of pathways that ultimately result in elimination of the dam-

aged mitochondria by the autophagy machinery of the cell, a process also known as mi-

tophagy. Mutations to PINK1 and Parkin have been shown to lead to neuronal and mus-

cle cell degeneration, accumulation of defective mitochondria and early onset Parkin-

son’s disease [32, 33]. Cells treated with a siRNA knockdown for in PINK1 also display

an aberrant, fragmented morphology, and their cristae were much less numerous than

in untreated cells [34].

Mitochondria in mammals are exclusively inherited from the mother. Because of the

lack of genetic recombination and high mutation rates from ROS exposure, mecha-

nisms have evolved to limit the distribution of mtDNA with pathogenic mutations to

offsprings. However when these control mechanisms fail, the offspring inherits a signifi-

cant load of harmful mutations in their mtDNA and experience a host of diseases related

to OXPHOS defects. These diseases, termed encephalomyopathies display a broad range

of phenotypes that are most obvious in tissues with high metabolic needs such muscle,

nerve and brain tissue. An example of a disease in this class is Leber’s hereditary optic

neuropathy (LHON), which is characterized by a loss of central vision [35].
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1.5 Motivation and goal of thesis

Remodeling of the mitochondrial network in response to metabolic changes entails

changes to the structure of the mitochondria from the ultrastructure level (cristae),

network level (connectivity between tubules) up to the cellular level. Morphological

changes in dysfunctional mitochondria that are manifest in the pathologies mentioned

previously (which is by no means complete) drives the need to have a ’systems’ level un-

derstanding of the relationship between mitochondrial structure and function. However,

an integrated, quantitative understanding of the mechanisms linking the changes of

structure in response to functional state (and vice versa) is lacking in the field. Previous

studies have provided detailed investigations at a specific level (for example detailed

studies of the ultrastructure via electron microscopy, [36, 37]) without considering

the context of changes at the macroscopic level (network and cell). Other studies have

described qualitatively the phenotype of changes in mitochondrial morphology in re-

sponse to alterations of growth conditions and mitochondrial fusion machinery [17, 38].

At the cellular level past studies have shown an asymmetry of function between mother

and daughter cells in budding yeast, without an analysis of the spatial distribution of

this asymmetry [39, 40]. A more fundamental requirement that was lacking until very

recently is a method to characterize mitochondrial structure beyond visual inspection

and qualitative assessment. While advances in this field has made it possible to ana-

lyze mitochondrial structure quantitatively [24, 41, 42], no study has been presented

so far that investigates the relationship between function and network structure in an

integrated and statistically validated manner.

The goal of this thesis is to develop a multi-scale, quantitative investigation of the changes in

structural features and functional states of yeast mitochondrial networks in response to changes

to the metabolic state of the cell.
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1.6 Budding yeast as a model organism for studying

structure-function relationship

The metabolic states that we are interested in are those that minimize and maximize

the contribution of OXPHOS derived respiration to the energetic needs of the cell. In

this regard, the budding yeast Saccharomyces cerevisiae model organism confers partic-

ular advantages with regards to the specificity and ease of manipulation of cellular

respiration states in order to study changes to the mitochondrial network structure.

By simply switching the carbon source of their growth media, one can either induce

cells to undergo only fermentation (when grown in high glucose concentrations, which

also represses mitochondrial growth), both fermentation and respiration (using a fer-

mentable non repressing substrate) or maximal aerobic respiration (when grown in

a non-fermentable substrate such as glycerol). In addition powerful genetic methods

have been developed for the isolation of mutant strains lacking mitochondrial dynamics

[38, 43] and inheritance related machinery [44, 45]. Lastly, mitochondria in yeast have

networks that are much smaller compared to mammalian cells. However they still retain

complex three-dimensional structures. This makes it much easier to segment, quantify

and analyze the networks using the full power of network theory, allowing one to study

the relationship between network structure and function quantitatively.

1.7 Overview of thesis

The following is a brief summary of the work done and results obtained in Chapters 2–6

of this thesis and how they are relevant towards meeting the goal of this thesis.
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In Chapter 2, we detail a method to map a parameter for mitochondrial function (ΔΨ)

to structure using a mitochondrial dye for ΔΨ and a fluorescent protein targeted to the

mitochondrial matrix. The three dimensional spatial information containing functional,

structural and other parameters are stored in a database that allows one to easily quan-

tify and compare these parameters at different size scales, allowing one to have a truly

integrated view of the structural and functional changes that occur in yeast mitochon-

drial networks in response to changes in respiration state. This database is subsequently

used for the analysis done in Chapter 4, 5 and 6. We wanted to compare changes to

structure of the mitochondrial network in response to metabolic need. In order to do

this, in Chapter 3 we measured the oxygen consumption rate of cells growing in differ-

ent carbon sources. Based on the literature and previous work we had some idea for

the expected respiration rate and their corresponding ΔΨ level. Unexpectedly we found

that the oxygen consumption rate and ΔΨ did not have a simple correlation for some of

the carbon sources, therefore we concluded that mitochondrial respiration efficiency de-

pended on which carbon source it was in. We also discussed why we would need a few

additional parameters using a different instrument in order to confirm our reasoning.

Having developed the computational tools and a set of metabolic conditions to compare

structure function changes, in Chapter 4 we proceeded to investigate the distribution of

ΔΨ in a single mitochondrial tubule. We compared the distribution of real ΔΨwith ran-

domly sampled ΔΨ in mitochondrial tubules to establish a baseline level of heterogene-

ity and concluded that the observed heterogeneity was real and nonrandom. Further-

more we found that tubules in respiratory conditions correlated at smaller length scales

and reasoned that it is most likely due to an increase in cristae density. We also found

that tubules in respiratory conditions had an increased tubule thickness while having a

lower variation of thickness along the length of the tubule. In Chapter 5, we analyzed

the distribution of function (ΔΨ) within regions of the mitochondrial network. We found

that connectivity of the mitochondrial network scaled with surface density, but function
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(ΔΨ) did not scale with connectivity. From these results we concluded that our assump-

tion that the network connectivity could indicate regions of increased fusion activity

(along with increased ΔΨ) was wrong, or at the very least our static data could not dis-

tinguish sites of higher fusion activity. Furthermore mitochondrial fragments that were

isolated from the mitochondrial network proper did not show any difference in their ΔΨ

levels. Again we concluded that we would need dynamic data or a mutant strain for mi-

tophagy in order to obtain a conclusive result. In Chapter 6, we detail the development

of a method to analyze the spatial distribution of ΔΨ between the mother and buds of

budding yeast based on the functional mapping pipeline developed in Chapter 2. Simi-

lar to previous studies, we found evidence for a functional asymmetry between mother

and bud (buds have a higher ΔΨ level). In addition we showed that this functional asym-

metry was maintained throughout the entire cell division cycle. We also detected an in-

creasing gradient of ΔΨ in the direction of the bud along the mother-bud cellular axis.

Lastly in Chapter 7 we conclude with the contributions and significance of this thesis

and provide some future directions for extending the research work done.
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Chapter 2

Structure-function mapping of

mitochondrial membrane potential onto

3D mitochondrial networks

Portions of this chapter were published in M. P. Viana, S. Lim, and S. M. Rafelski, “Chapter

6 - Quantifying mitochondrial content in living cells,” in Methods in Cell Biology, vol. 125 of

Biophysical Methods in Cell Biology, pp. 77–93, Academic Press, 2015.
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2.1 Introduction

Mitochondria in yeast form a three-dimensional network structure localized to the cor-

tical periphery of the cell. This network displays a dynamic morphology that changes

in response to the metabolic state of the cell. Many groups have therefore studied the

structure of the mitochondrial network as they could correlate metabolic, genetic and

biochemical data with the morphological changes to the organism. However, a signif-

icant challenge has been to quantify automatically these structural features with func-

tional state in a rigorous an unbiased manner. Ideally an automated structure-function

mapping pipeline should be able to provide spatial information that enables one to an-

alyze the distribution of the functional marker down to the level of individual tubules

within the network. However as we shall detail in this chapter, such a pipeline has been

lacking in the field.

Since the 1970’s, effort had been made to characterize the overall structure of the en-

tire mitochondrial network using serial thin sections of chemically fixed cells [46]. In-

deed the first computer aided visualization of the mitochondrial network was done in

1979 based on these thin section data [20]. This was a laborious method which involved

digitizing hand tracings of the mitochondrial network. With the advent of a matrix tar-

geted fluorescent protein (FP) marker, live cell 3D imaging of the mitochondrial network

was demonstrated for the first time by [47]. Since then further improvements have come

from higher optical resolution (confocal and super resolution microscopy [48]) together

with advances in image processing algorithms of the network itself.

It was not long before the technique of using fluorescent imaging of live cells was used

to study mitochondrial structure and their relationship with functional state changes.

Although done in mammalian cells, the work by [49] was particularly unique for adopt-

ing a quantitative approach to obtaining measurements of mitochondrial morphology
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and function. They used a lipophilic cationic dye (Rhodamine 123) which accumulates

in the mitochondria in a membrane potential ΔΨ dependent manner to label the mito-

chondrial structure and simultaneously ΔΨ. This study was noteworthy for using quan-

titative descriptors for mitochondrial morphology, for example rather than using qual-

itative descriptions of mitochondrial shapes such as ’tubular’, ’fragmented’ or ’swollen’

which was typical for that time [17, 38], they used objective shape parameters such as as-

pect ratio, perimeter, area and form factor. However their study only showed bulk mea-

surements of ΔΨ and did not actually map local ΔΨ variations within network. Another

shortcoming was their segmentation methods for mitochondria was relatively simple,

because they were working with flat, 2 dimensional fibroblast cells.

A major shortcoming of the above study and others [50] is that they only used a single

reporter for mitochondrial structure and function. This means that they could not label

the mitochondrial structure in a manner that was independent of the functional state

of the network. The lack of a dual reporter system also results in false variability arti-

facts in the functional channel, which are detailed in section 2.2.6. The use of a dual

reporter system is critical to control for false variability in the functional channel, and

more groups have started to implement normalization methods to control for this false

variability [42, 51, 52]

Perhaps even more important is a reliable, validated approach to segment the 3D mito-

chondrial network. For example one group quantified redox state and reactive oxygen

species (ROS) levels in yeast mitochondrial networks using an image intensity based seg-

mentation of the network [50]. However intensity based segmentation is very sensitive

to thresholding parameters and their data does not indicate how their segmentation was

validated nor did it give any indication that they could obtain three dimensional topo-

logical data from their segmentation method. Perhaps the closest to an ideal structure

function mapping approach was in a recent study by Vowinckel et al. [42]. In this study
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they used a dual reporter system to co-label yeast mitochondrial structure using a ma-

trix targeted FP together with a respiratory chain associated protein FP whose import is

membrane potential dependent. They presented a validated mitochondria segmentation

software (Mitoloc) to quantify structure and function in yeast mitochondria. However

their quantification methods for mitochondrial morphology focused more on shape pa-

rameters that distinguish the ’fragmentation’, ’condensation’ or ’tubular’ state of the net-

work. In other words they did not study the connections within the network itself, but

rather overall parameters for describing the morphology of the entire network.

We present a completely open-sourced pipeline for multi-scale, quantitative analysis of

structure and function in yeast mitochondrial networks. Our approach combines the out-

puts of MitoGraph v2.0 [53], a mitochondrial segmentation and skeletonization software

developed in the Rafelski lab with additional algorithms to map a functional dye ΔΨ

onto mitochondrial networks expressing a matrix targeted FP.

2.1.1 Development of a structure function mapping pipeline

MitoGraph v2.0 is a fully validated software developed in the Rafelski lab by M.Viana.

It uses non-intensity based image processing techniques for accurate (85%) and repro-

ducible (96.7%) segmentation of mitochondrial network in yeast [53] . In this project, we

used the outputs of MitoGraph v2.0 skeletonization routine to obtain spatial informa-

tion of mitochondrial networks labeled with a matrix targeted FP. We then developed a

voxel by voxel colocalization pipeline to map a channel for a dye that labels ΔΨ distribu-

tion along the network. We used a lipophilic cationic dye, 3,3′-dihexyloxacarbocyanine

iodide (DiOC6) that accumulates in the matrix in a ΔΨ dependent manner. DiOC6 is a

popular choice for labeling ΔΨ in yeast studies, as it falls under a class of lipophilic dyes
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that accumulate according to the Nernst equation:

ΔΨ = 𝑅𝑇
𝑧𝐹 𝑙𝑛[ionmito]

[ioncyto] (2.1)

Where 𝑅 is the universal gas constant, 𝑇 is the absolute temperature, 𝑧 is the charge of

the cation and 𝐹 is Faraday constant

2.2 Materials and Methods

2.2.1 Spinning disk microscopy platform

All images in this thesis were obtained using a spinning disk confocal microscope with a

motorized stage to enable live cell three dimensional microscopy as shown in Figure 2.1.

The microscope chassis (Nikon Eclipse Ti) was paired with a Yokogawa CSUX spinning

disk head. The objective was an oil immersion 100× with (NA 1.49) with a correction

collar.

Excitation source were from two Coherent Optically Pumped Semiconductor Laser mod-

ules at 488 nm/561 nm synchronized with the camera using custom TTL hardware (So-

lamereTech). Laser switching was achieved via an acousto-optic tunable filter (AOTF,

Solameretech) which enables near instantaneous switching times (<0.1 ms). The dichroic

and emission filter was a multiband filter set from Chroma (TRF89901-EM) with pass-

bands at DAPI/GFP/RFP/Cy5 emission spectrum. An ASI (Eugene, OR) piezoelectric

focus and motorized stage enabled automated stack acquisition. Acquisition software

was via MicroManager ImageAcquistion software (v 1.4.17). All imaging was done at

30°C via a temperature controlled housing over the chassis (inVivo Scientific). The cam-

era was a low noise Hamamatsu EMCCD (C9100-23B) camera air cooled to -65°C with
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a 512×512 pixels imaging back-thinned CCD enabling high quantum efficiency of up to

90%, with a fastest readout speed of 32 frames/sec at 1× binning. The entire platform

rests on a vibration isolating table (TMC, Ametek MA).

Figure 2.1: Schematic diagram of the spinning disk microscope platform.

2.2.2 Strain construction for visualization of matrix structure

The original cell strain (SMR-12, W303a background stain) expressed the plasmid

pVT100U-dsRed (URA), which contained subunit 9 of the F0-ATPase (Su9(1-69)) under
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the ADH1 promoter with dsRed fused to the C-terminus to constitutively label the mito-

chondrial matrix. However it was found that the excitation region of the dsRed protein

had a significant overlap with the GFP excitation region (Figure 2.2). This resulted in

Figure 2.2: Excitation-emission spectra of dsRed (561nm peak excitation) showing significant region of
emission crosstalk from GFP excitation (488nm).

significant channel crosstalk from the dsRed protein when imaging in the GFP channel

(Figure 2.3). To overcome this, the plasmid pFA6a-yomRuby2-Kan (gift of Kurt Thorn,

UCSF [54]) expressing a yeast codon optimized deep red fluorescent protein (mRuby2)

was PCR amplified with primer sequences 5′ACAGCGGGTACCATGGTGTCCAAAGGAGAGGAGTTAA

TC′3 and 5′ACAGCGCTCGAGCCTTACTTATACAATTCATCCATACCACCGC′3 (Figure 2.4A). The insert

was cloned into a matrix targeting plasmid, pVT-100UGFP2 (gift from Jodi Nunnari, UC

Davis [18]), at the XhoI and Kpn restriction sites Figure 2.4B. Colonies of this new strain
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(SRY-124, background strain W303a) expressing this new plasmid, pVT100-mRuby2

(URA) were verified by digestion at the EcoRI and HindIII + SphI site (Figure 2.4C).

This new strain exhibited significantly reduced crosstalk from the mRuby2 fluores-

cent protein when imaging in the GFP region, which is where the functional reporter

DiOC6 operates in (Figure 2.3). On average the amount of crosstalk was reduced from

an average of about 20% using dsRed to less than 3% when using mRuby2.

2.2.3 Cell preparation and loading of functional dye

Cells from strain SRY-124 (described in section 2.2.2) were inoculated from -URA selec-

tion plates and cultured overnight at 30°C in a roller drum in the growth media of inter-

est (Yeast Extract + Peptone + either 2% glucose (YPD), 2% glycerol+ 2% ethanol (YPE),

2% lactate (YPL) or 2% raffinose (YPR)). A 5 ml 0.05 OD dilution from this overnight cul-

ture (which was at ~0.5 OD600) was grown to mid-log phase (0.4–0.5 OD600). Samples

were pipetted out into a 1.5 ml microcentrifuge tube and diluted down in growth me-

dia to a ratio of 1:8 before been vortexed briefly to break up cell clumps. The cells were

stained with DiOC6 (D-273, Thermo Fisher) to a final concentration of 100 nmol from

an original master stock concentration of 10µmol (in ethanol). The loaded cells were in-

cubated for 30 minutes at 30°C, spun and wash before reloading in fresh growth media

with 100 nmol of DiOC6.

A glass bottom 96 well plate was treated with 1% Glassclad18 (Gelest Inc, PA) for 5

minutes and oven dried at 70°C overnight. Glassclad18 is a monomeric octadecylsilane

glass surface coating that imparts a negative charge to the surface. This ensures that

the DiOC6 dye does not bind to the glass, which would result in a high background

and reduce the signal to noise ratio from the mitochondria (Figure 2.5). Subsequent to

surface treatment, each well was loaded with 100µl of Concanavalin-A (C-5275, Sigma
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Figure 2.3: Comparison of crosstalk levels in mRuby2 and dsRed.
Shown in this figure are cells expressing either mRuby2 or dsRed and imaged at 561nm and 488nm.
The optimum excitation frequency for these proteins are at 561nm, but significant crosstalk is apparent
in dsRed when excited at 488nm. Theoretically with zero crosstalk there is zero signal in the 488nm
channel, but the intensity of the 488nm channel was 20% of the value in the 561nm channel. This per-
centage (and hence crosstalk level) was significantly reduced in mRuby2 (488nm intensity was 3% of
the 561nm channel).
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(A) Original plasmid (gift of Kurt Thorn, UCSF) containing the mRuby2 sequence.

(B) Insert was generated by PCR amplification of mRuby2 sequence at the KpnI and XhoI restriction sites
and cloned into pvt100U-GFP2 (gift of Jody Nunnari, UC Davis).
Primer sequences for the insert were 5′ACAGCGGGTACCATGGTGTCCAAAGGAGAGGAGTTAATC′3 and 5′ACAGCGC
TCGAGCCTTACTTATACAATTCATCCATACCACCGC′3.

(C) The new plasmid, pvt100-mRuby2 (URA) was cloned into W303a background strain and the new
strain was SRY-124. The plasmid was verified for correct insertion by digestion at the HindIII and SphI
site.

Figure 2.4: Plasmid construction details for pvt100-mRuby2 for cloning into SRY-124.
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Aldrich) to help cell adhesion to the glass surface. Each well was then loaded with 100µl

of growth media containing cells stained with DiOC6 (D-273, Thermo Fisher) and al-

lowed to incubate at 30°C for about 15 minutes to allow the cells to adhere to the glass

surface. The remaining cells in the solution were aspirated and 200µl of fresh growth

media containing 100 nmol of DiOC6 was loaded into the well and immediately imaged.

(A) Maximum intensity projection of a cluster of W303a cells stained with DiOC6 loaded in a glass bot-
tom 96 well plate. The dye adheres to the glass surface, causing a significant background image that
washes out the signal from mitochondria stained with the dye.

(B) Maximum intensity projection of a cluster of cells loaded on a well treated with Glasclad18. There is
significant improvement in the signal to background noise ratio, enabling the mitochondria stained
with DiOC6 to be clearly visible.

Figure 2.5: Signal to noise ratio improvement from DiOC6 channel (mitochondrial membrane potential
(ΔΨ) marker) after application of Glasclad18 on imaging surface.

2.2.4 Image microscopy pipeline

The cells that were stained and loaded into the 96 well plate in section 2.2.3 were imme-

diately transferred to the microscope stage holder with the housing chamber set at 30°C.

Each well contained cells growing in different carbon types and were imaged as follows:
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1) A field of stationary, non clumped cells expressing the fluorescent protein (mRuby2)

adequately with healthy mitochondrial morphology was selected via the eyepiece.

Individual cells for imaging were then selected via the camera from a region adjacent

to this field.

2) Excitation laser power was selected to the minimum needed to give a good signal

to background intensity ratio. The minimum signal over background fluorescence

was 1.16 (typical background noise ~2000, minimum signal ~2400) for accurate skele-

tonization by MitoGraph v2.0. Photo-damage of the mitochondria was avoided by

using low laser power for each channel (typically no more than 20% of the max range

of the laser). Cells with medium to low expression of the protein were selected in or-

der to minimize crosstalk between the signals from the fluorescent protein and the

mitochondrial membrane potential dye. This also avoided aberrant mitochondrial

morphology due to over expression of the protein in the mitochondria. Typical inten-

sity values for cells were between 3000 – 5000 a.u.

3) A Z-stack was taken of the cells in order to generate a 3D rendering of the mitochon-

drial network within the cell. The filter settings were set to the appropriate excitation

and emission wavelength of the fluorescent protein being expressed. The bottom and

top slice positions were set so that the mitochondria was just slightly out of focus at

these positions to ensure that the entire mitochondrial network in the cell was im-

aged.

4) Exposure time was set at 100 ms to reduce photo damage and minimize organelle

movement during z-stack image acquisition. Each channel was switched sequen-

tially by the AOTF before moving to the next z-position to minimize organelle move-

ment between channels (Figure 2.6). All hardware controls (stage movement in the

z-direction during z-stack acquisition and AOTF laser switching) were triggered via

TTL which ensured minimum hardware latency.
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Figure 2.6: Comparison of sequential channel vs sequential stack switching scheme.
Fast switching time in the sequential channel switching scheme using the AOTF (<0.1ms) ensured that
the membrane potential and mitochondrial matrix structural reporting channels (DiOC6 and mRuby2
respectively) were optimally colocalized and did not suffer from organelle movement when compared
to the slower sequential stack switching scheme, which typically takes ~2.5 seconds to complete a full
stack acquisition.
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2.2.5 Data preparation before input into pipeline

Images were saved as 16-bit TIFF stack files. A maximum intensity projection of each Z-

stack image was generated automatically via ImageJ batch script. For each cell, the slice

with the best focus (defined as where the outlines of the cells in the brightfield stack

were least visible) was used to determine if a cell was a budding cell or two individual

cells. A region of interest (ROI) was traced out by hand in ImageJ in the corresponding

fluorescent image stack (Figure 2.7A). These ROI’s were used to crop out the individual

cell from the original stack. The cropped out fluorescent channel cell stack was then pro-

cessed by MitoGraph v2.0 segmentation software. In order to enable cell size measure-

ments, another pair of ROIs were traced (in the brightfield channel) over the mom and

bud of the cell and an ellipse fitted to the ROIs (Figure 2.7B)

(A) Maximum intensity projection of the matrix marker image stack. An ROI (white outline) is hand
traced and made into a cropping mask which is applied to the image stack. This cropped image stack
was used as input into MitoGraph v2.0 software.

(B) Brightfield image of the same cell. In order to enable size measurement of the mom (M) and bud (B)
cell, a pair of ROIs were traced and an ellipse fitted over the trace.

Figure 2.7: ROI tracing for a budding yeast cell.
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2.2.6 Artifacts that may arise when mapping ΔΨ to mitochondrial net-

work

Mapping of ΔΨ to mitochondrial structure is fraught with the potential for artifacts gen-

erating a biased or unreliable reading of ΔΨ. These artifacts result from several issues

that are related to dye quenching and toxicity, focal plane variation, cell to cell uptake

variability and volume variation dependence of fluorescence intensity.

While DiOC6 has been long been used as a membrane potential indicator in yeast [55–

57], most of the other studies mapping function to structure in live mammalian cells

tended to use Tetramethylrhodamine (TMRM), the ester form TMRE or the ratiometric

dye JC-1. JC-1 is known to have aggregation artifacts and so was avoided. TMRM and

TMRE are generally considered less toxic to the respiratory chain compared to DiOC6

and is supposed to have better resistance to self quenching of the fluorophore. However

we could not find any discernible impairment of the mitochondria in our hands or in

the literature that have also used DiOC6.We found that TMRM could not provide a high

enough signal to be successfully mapped to the network, most likely because of the cell

wall in yeast that is not present in mammalian cells. Therefore we switched to DiOC6,

using the same concentrations, loading protocols and uncoupling tests of other studies

that have also used DiOC6 to label ΔΨ [58–60]. We also verified that at the concentra-

tions we used (100 nmol), the dye was not operating in quench mode (i.e. could indi-

cate ΔΨwith a higher signal) by observing a higher ΔΨ level in cells that were known to

have a high ΔΨ level (respiration) and could be depolarized by an uncoupler (Figure A.1,

courtesy of V.Jayashankar).

The intensity of the mitochondrial membrane potential marker and the matrix marker

is strongly affected by their position [51, 52] in the focal plane due to spherical aberra-

tion effects that originate from refractive index mismatch. Refractive index mismatch is
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inevitable when one uses an oil immersion objective to image live cells. This results in a

distorted point spread function that causes regions of the cells that are far away from the

cover slip to have the lowest signal intensity.

Variation in dye intensity can also result from differences in dye uptake levels between

cells. This means that we cannot convert raw intensity values of the ΔΨ channel into ab-

solute voltage to compare ΔΨ between cells, as we cannot control for dye uptake issues

that are independent of ΔΨ. This is the disadvantage of using a dye to label ΔΨ, how-

ever we can still quantify ΔΨ distributions within a cell as there should be not any vari-

ability in dye uptake within the same cell that are not related to ΔΨ.

The last issue relates to intensity variation of the fluorophore due to volume changes.

This applies more to the case of the mitochondrial structural marker. Although the ex-

pression of the matrix targeted fluorescent protein is not dependent on membrane po-

tential, volume variation along a tubule can result in a thick section of tubule having a

higher integrated intensity compared to a thin tubule.

2.2.7 Pipeline to map ΔΨ to mitochondrial network with normaliza-

tion and scaling to control artifacts

Having listed all the artifacts that can arise when mapping function to structure, the

next step is to account for these artifacts and controlling for their effects where possi-

ble when we map function to structure. The first step of the pipeline is a background

subtraction of the two channels to correct for camera offset. The background value was

set by picking two points without any signal in the original stack. For each channel, a

spherical region 2.5 pixels in radius (equivalent to 138 nm) was set along every point

coordinate (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) of the skeleton generated by MitoGraph v2.0. A point cloud from

this sphere was mapped onto the 3D voxels file of each channel. A mean value of all the
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points lying within this point cloud was assigned to the point (𝑥𝑖, 𝑦𝑖, 𝑧𝑖). This averaging

served as a smoothing filter to correct for noise/jitter in the channel while reasonably

capturing the signals from a typical mitochondrial tubule with thickness ~300 nm [48].

For the mitochondrial matrix marker, the values were then normalized to 0 and 1 by scal-

ing to the min and max of the channel in that particular cell. This means that the matrix

channel was scaled to the intensity of the narrowest portion of the tubule in that cell’s

mitochondrial network. This controls for the matrix intensity variation due to tubule

thickness variations, hence addressing the problem of volume variation dependence of

fluorescent protein intensity.

The background subtracted DiOC6 channel representing membrane potential was then

normalized to the matrix channel (scaled to min-max). This normalization controls for

the focal plane variation problem as both channels are affected similarly by spherical

aberration, thus their ratios ’cancel’ out the errors. The resulting channel represents a

spatial ’heat map’ of mitochondrial membrane potential over the mitochondrial network

within that cell. A flowchart of the pipeline is shown (Figure 2.8)

The source codes for the pipeline modules are included in Appendix D.1.

2.2.8 Data wrangling – database structure

The raw outputs of MitoGraph v2.0 that are used in the pipeline are a set of coordinates

representing a skeleton of the mitochondrial network along with a connectivity list

with information on how the points connect to each other. The other outputs that are

used are the 16-bit scalar intensity values of each channel for the matrix marker, ΔΨ and

tubule width of the mitochondrial network.
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Figure 2.8: Pipeline modules for mapping function (ΔΨ) onto structure.
The boxes A-E roughly correspond to the individual program modules used in the pipeline. Module
A represents all steps from image acquisition up to skeletonization by MitoGraph v2.0 to generate a
raw skeleton and surface rendering of the matrix marker channel (mRuby2). Module B represents the
point cloud averaging from the voxels of the 3D image stack. For each point along the line, the mean
intensity value of all points within the red sphere was assigned to the point marked in yellow. Module
C represents a background subtraction module that is applied to both matrix marker and ΔΨ channel.
The images shown are the skeleton after background subtraction and point cloud averaging for ma-
trix (mRuby2) and ΔΨ (DiOC6). Module D represents a min-max scaling of the pixel intensities to the
minimum intensity to control for volume dependence of matrix marker channel due to tubule width
variation. Module E represents the spatial heat map of ΔΨ along the skeleton after normalizing the
background corrected ΔΨ channel (from module C, DiOC6) with the scaled, background subtracted
matrix channel (from module D).
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The native file format of the data is in the Visualization Toolkit (VTK, http://www.vtk.

org/) format which is a C++ library for 3D scientific visualization with interfaces for

Python and other interpreted languages. The native data is ’wrangled’ or organized

into a standard tidy data form [61] and stored using a database structure with the Pan-

das data analysis module (http://pandas.pydata.org/) in Python 2.7. Data wrangling

involves reshaping the raw data format structure (i.e. a mitochondrial network) into a

form that is most convenient for performing calculations at a scale that is relevant to the

type of analysis. The output can then be aggregated if necessary for further calculations

downstream or for visual data presentation.

The database (Figure 2.9) incorporates ~100 variables which are measures related to

structure and function across multiple size scales as well as measures that relate to ei-

ther heterogeneity, function or cell asymmetry. These variables were calculated from the

outputs of MitoGraph v2.0 as well as other meta-data (for example cell name, cell car-

bon source) and non MitoGraph v2.0 derived data (such as oxygen consumption rates).

The database enables convenient data exploration and multi-scale analysis of structure-

function in mitochondrial networks, with the data organized in ’tidy-data’ form [62] and

allowing a layered grammar of graphics presentation of the results [63]. A list of vari-

ables from the database is included in the Appendix section (Table C.1).

The source code for constructing the database is included in Appendix D.2.
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Figure 2.9: Schema of database used for multi-scale analysis of structure-function relationship in yeast
mitochondrial networks.
Shown here is the database used in this thesis which uses the Pandas data analysis module in Python
2.7. The database consists of an input data module, a calculations module and a wrangled data mod-
ule. The input data module stores the outputs of MitoGraph v2.0, metadata sources and oxygen con-
sumption data. The primary calculations module processes the data from the input data module to
obtain measures such as connectivity, heterogeneity measures and transformation matrix used for cal-
culating mother-daughter cell axis. The processed data is then reshaped and aggregated (’wrangled’)
into the form most appropriate for the scale and functional measure it will be used for, for example in
mother-bud functional asymmetry analysis.
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Chapter 3

Carbon substrate dependent variation of

metabolic state in budding yeast
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3.1 Introduction

Budding yeast are able to generate their energy from either fermentation or respiration.

When grown in conditions where they are forced to undergo respiration, their mitochon-

drial networks display an increase in size and appear more connected (’degree of ram-

ification’, [17]). This simple but powerful connection between metabolic state and mor-

phology of the organelle underlies our rationale for varying growth substrates to study

the structure-function relationship in yeast mitochondrial networks. We begin this chap-

ter with an overview of how yeast metabolize different carbon substrates using either

fermentation or respiration dependent pathways, how cellular respiration and oxidative

phosphorylation (OXPHOS) respond to bioenergetic needs of the cell, how we might

measure the bioenergetic state of cells and what the expected levels of these measure-

ments would be for the substrates we used in this study.

The preferred sugar sources of budding yeast are glucose and fructose [64]. When glu-

cose levels are high, the expression of enzymes and proteins needed for metabolizing

other types of carbon sources and mitochondrial biogenesis are repressed and all en-

ergy is derived via fermentation. This phenomenon is known as carbon catabolite re-

pression or alternatively glucose repression [65].Yeast can utilize non-fermentable car-

bon sources such as ethanol, pyruvate, lactate and glycerol. Yeast grown under aerobic

conditions on these substrates derive their cellular energy almost exclusively from respi-

ration [66]. The oxidation of pyruvate to acetyl-CoA generates one unit of the reducing

agent NADH. Acetyl-CoA then serves as a substrate for further oxidation in the tricar-

boxylic acid (TCA) cycle. Lactate is oxidized to pyruvate by an external, intermembrane

facing complex known as lactate:cytochrome c oxidoreductase, located near the end of the

electron transport chain (ETC) [67]. Ethanol is converted to acetyl-CoA via the NAD+

dependent alcohol dehydrogenases, generating two units of NADH [68, 69]. Glycerol is

converted to glyceraldehyde-3-phosphate, an intermediate metabolite in the glycolysis
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pathway which ultimately generates pyruvate. Gycerol also plays a role in the glycerol-

3-phosphate shuttle which allows cytosolic NADH to provide the electrons directly into

the ETC [70].

NADH is oxidized aerobically in the mitochondria by donating electrons into the ETC

chain. Oxidation of NADH in the OXPHOS process generates around 1.5 ATP units of

[71]. This stoichiometry is lower than other higher eukaryotes (commonly given as 2.5

ATP per NADH) due to the fact that the NADH dehydrogenase (Complex I equivalent)

in yeast is non proton translocating, resulting in a lower ATP/oxygen conversion ratio.

In mammalian cells, NADH donates electrons into the chain solely through the internal

(matrix facing) NADH dehydrogenase Complex I. However yeast also have external (in-

termembrane facing) dehydrogenases Nde1p/Nde2p [68]. This means that substrates

that are not derived from the TCA cycle can also contribute to cellular respiration. An

example of this is the pyruvate dehydrogenase bypass [72], where pyruvate oxidation

occurs in the cytosol and the NADH generated from cytosolic pyruvate oxidation is re-

oxidized via these external dehydrogenases. The net result is that the ATP yield from

pyruvate catabolism is lower than would be expected in yeast.

Yeast can also utilize fermentable non repressing carbon sources, such as raffinose and

galactose. Under these conditions both fermentation and respiration can occur simulta-

neously. Raffinose is a trisaccharide composed of glucose, fructose and galactose. Raffi-

nose is hydrolyzed to fructose and melibiose, a disaccharide consisting of glucose and

galactose [73]. Galactose is converted to glucose-6-phosphate via the Leloir Pathway

and then enters the glycolysis pathway, ultimately generating pyruvate which enters

the TCA cycle.
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3.1.1 Parameters of the OXPHOS process

The main physiological role of mitochondria in the cell is ATP generation by OXPHOS.

In the context of this project, our main interest is related to the function of the respira-

tory chain of the mitochondria. Therefore the most relevant assays are those related to

cellular respiration and maintenance of the proton motive force (PMF), which are critical

parameters of the OXPHOS process.

Figure 3.1: Substrate oxidation driven respiration generates proton motive force which is consumed by
ATP synthesis and proton leak.
Substrate oxidation consists of all reactions upstream of the ATP synthase, such as reactions in the ETC
and those involved in substrate uptake mechanisms. ATP synthesis occurs via OXPHOS at the ATP
synthase complex while proton leak consist of all reaction that consume PMF and do not generate ATP.

The respiratory chain of the mitochondria consists of the electron transport chain (ETC)

and OXPHOS protein complexes. If we consider the ETC/OXPHOS component of the

mitochondria as the ’device’ (Figure 3.1), we can think of the input into the device as

the rate of metabolic substrate oxidation which generates the PMF. The device than uses

PMF to generate ATP via phosphorylation of ADP. There are losses and shunts in the

system due to proton leak, which consumes PMF but does not result in ATP synthesis.

The current into this device is measured via the respiration rate. Mitochondrial respi-

ration rate is directly related to the amount of oxygen been reduced to water at Com-

35



plex IV, the terminal end of the ETC cascade. Because of the tight coupling [74] between

electrons entering the ETC cascade and protons pumping out of the matrix, oxygen con-

sumption measures the proton current flowing in the ETC cascade. Proton motive force

(PMF), which is composed mainly of ΔΨ (3.1) is a measure of the electrochemical gra-

dient available to drive ATP synthesis and is analogous to the voltage level of a device.

Together these two assays (O2 consumption and measurement of PMF/ΔΨ levels) are

able to give a quantitative assessment of mitochondrial functional state [75].

PMF = ΔΨ − 61.5ΔpH (3.1)

Figure 3.2 gives an excellent summary of how the input, output and losses/shunts of the

ETC/OXPHOS machinery are related to the current-voltage characteristics of the sys-

tem. As we move toward the left along the red curve (increasing substrate oxidation rate,

state 4 to state 3), respiration rate rises steeply as PMF is consumed. At this maximal res-

piration rate (state 3, ADP present with substrate), the response of ATP synthesis to PMF

is shown in the blue curve. The respiration rate is progressively inhibited via a substrate

enzyme inhibitor (malonate). This blue curve shows that the amount of PMF generated

is a linear function of the amount of respiration. The ’proton leak’ (green curve) is sim-

ilarly derived by progressively inhibiting substrate oxidation at state 4 (no ADP). PMF

gradually falls as proton leak driven respiration goes to zero. This also brings up an im-

portant point of proton leak respiration: even when there is no ATP synthesis activity,

endogenous substrate driven respiration still occurs to generates a PMF that is then con-

sumed by the proton leak shunt. In other words the mitochondrial machinery keeps the

respiration machinery primed with PMF to respond to a change in ATP demand. The

relative proportion of respiration been consumed by ATP synthesis and proton leak as a

function of respiration levels and substrate oxidation rate is shown in Figure 3.3.
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Figure 3.2 and Figure 3.3 show that OXPHOS is a complex process that is affected by

many factors. There are therefore many ways to measure the state of OXPHOS driven

respiration. The next two sections will focus on two parameters that are used to measure

OXPHOS respiration in this project.

Figure 3.2: Respiration – PMF relationship of mitochondria isolated from human lung carcinoma cells.
Shown is response curve of substrate oxidation, proton leak respiration and ATP synthesis to PMF.
The substrate given was succinate. Respiration levels were modulated via titration of FCCP for the
substrate oxidation curve and malonate titration for the ATP synthesis and proton leak curves. State
3 (maximal respiration, ADP present) and State 4 (minimal respiration, no ADP) are indicated in the
substrate oxidation curve. Note the linear relationship between respiration rate and PMF consumed
during ATP synthesis (blue line).
Adapted from Figure 2B of Brand et al., ”Assessing mitochondrial dysfunction in cells”, Biochem J 2011, used
under CC BY-NC 2.5
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Figure 3.3: Proportion of respiration from the input and outputs of ETC/OXPHOS.
At different respiration levels, the amount of proton leak varies depending on the level of ATP synthe-
sis. Proton leak is maximal when ATP synthesis is zero, to maintain PMF equilibrium generated by
substrate oxidation.
Adapted from Figure 2C of Brand et al., ”Assessing mitochondrial dysfunction in cells”, Biochem J 2011, used
under CC BY-NC 2.5

3.1.2 Mitochondrial membrane potential (ΔΨ) as a bioenergetic indi-

cator

Mitochondrial membrane potential (ΔΨ) is an indicator of the electrochemical gradient

that is available to drive protons from the intermembrane space (IMS) into ATP synthase

to phosphorylate ADP to ATP. Although respiration levels have a large gradient in re-

lation to PMF (a large change in respiration levels results in a small PMF/ΔΨ change

(Figure 3.2, red curve); the use of ΔΨ as a bioenergetic indicator is still relevant. Whereas

respiration measurements can only be done at a bulk level, ΔΨmeasurements using flu-

orescent lipophilic dyes that accumulate in a Nernstian manner enable direct visualiza-

tion of ΔΨ at the level of individual mitochondria [52, 76]. In addition, mitochondrial

dynamics, in particular selective fusion of mitochondrial fragments are believed to be

dependent on ΔΨ [22]. Since fusion is believed to be affected by ΔΨ levels, one can use
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ΔΨ as a biomarker for function and correlate it with changes to the structure of the mito-

chondrial network.

3.1.3 Oxygen consumption measurement of cellular respiration

The classic assay for cell respiration was developed by Chance and Williams [9], using

a Clark electrode to measure oxygen consumption rate (OCR) in isolated mitochondria.

In this assay, isolated mitochondria are incubated with a substrate and ADP (state 3).

As respiration increases the dissolved oxygen concentration decreases. The reduction of

oxygen to water by the flow of electrons from the ETC generates the necessary PMF for

ATP synthesis. Once ATP/ADP levels reach an equilibrium, ATP synthesis and respira-

tion rates slow down (state 4).

Figure 3.4: State 3, basal and State 4 respiration levels in rat cortical neuron cells.
State 4 is reached by addition of oligomycin from basal respiration levels. State 3 is reached by addi-
tion of a protonophore, FCCP from State 4. Respiratory control ratio is the ratio of state 3 to state 4
respiration level, spare respiratory capacity is State 3 minus basal level respiration.
Adapted from Figure 3A of Brand et al., ”Assessing mitochondrial dysfunction in cells”, Biochem J 2011, used
under CC BY-NC 2.5
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In intact cells, state 3 can be approximated by the addition of a protonophore such as

FCCP, to allow uncoupled (not tied to OXPHOS) maximal respiration (Figure 3.4). State

4 can be approximated by the addition of oligomycin to inhibit the ETC cascade. Any

respiration detected in state 4 is due to ’leak’ respiration (respiration due to protons

reentering directly into the matrix). We used the Clark electrode method to measure

basal respiration in this study. In intact cells, basal respiration corresponds to a state in-

termediate between State 3 (unlimited substrate and ADP, maximum respiration) and

State 4 (unlimited substrate, no ATP synthesis, minimal respiration).

3.1.4 Variation of carbon source substrates and their expected bioener-

getic measurements

In the context of this project, we wanted to study the change of structure and function

in the mitochondrial network in one metabolic state (fermentation) compared to another

(respiration). Therefore we grew yeast cells in different carbon sources to obtain:

a) glucose repressing conditions (2% glucose)

b) fermentable, non repressing conditions (2% raffinose)

c) Non-fermentable carbon substrates (2% lactate and 2% glycerol + 2% ethanol). The

use of two different non-fermentable carbon substrates was due to the fact that

glycerol enters the glycolytic pathway, and though it is usually considered a non-

fermentable substrate we decided to include lactate which completely bypasses the

glycolytic pathway.

Based on the above review and our understanding of how each of the different carbon

sources are metabolized, we expected cells grown in glucose to have the lowest OCR
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and ΔΨ due to the glucose repression effect. The non-fermentable carbon substrates (lac-

tate and glycerol+ethanol) were expected to have the highest OCR and ΔΨ due to the

cells having to undergo aerobic respiration. Raffinose was expected to have intermediate

levels of OCR and ΔΨ as it is able to undergo simultaneous fermentation and respira-

tion.

3.2 Materials and Methods

3.2.1 O2 consumption rate measurement using a Clark electrode

The Clark type electrode measures oxygen on a catalytic platinum surface [77]. The sys-

tem consists of a platinum cathode and silver anode, bridged by a potassium chloride

electrolyte (Figure 3.5). An oxygen permeable membrane separates the electrode from a

sealed chamber containing the liquid sample to be measured. The platinum cathode is

reduced by oxygen diffusing through the membrane. The current is proportional to the

oxygen concentration in the solution. At the silver anode, the circuit is completed by the

precipitation of silver chloride from the ions at the anode. An analog to digital converter

unit records the current that represents the oxygen concentration in the sample.

Oxygen consumption of yeast cells grown in the following media were measured in a

Clark oxygen electrode chamber (Oxytherm, Hansatech Instruments): Yeast extract +

peptone (YP) + glucose 2% (YPD), YP + 2% glycerol + 2% ethanol (YPE), YP + 2% lactate

(YPL), YP + 2% raffinose. Measurements of each condition consisted of 6–10 runs over 2

days (total N=14–20). Oxygen consumption rate (OCR) was reported as nmolO2
ml−1 s−1.

We normalized OCR by dry weight of cell as well as by cell number and mitochondrial

volume.
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Figure 3.5: Diagram of a Clark electrode used for oxygen consumption rate (OCR) measurement.
A PTFE oxgyen permeable membrane covers the platinum cathode and separates the cathode from
the sample. An electrolyte soaked wicking paper, which lies underneath the membrane serves as an
electrolytic bridge from the cathode to the anode. The current generated at the cathode is directly pro-
portional to the oxygen concentration in the sample (cells shown as blue dots), which is enclosed by a
sealed chamber (orange and white rectangle).
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3.2.2 OCR measurement protocols

1) Cells were grown in suspension to log phase (details in section 2.2.3)

2) Setup and calibration of the electrode was performed on the day of the experiment

using the instructions from the manufacturer. A 50% potassium chloride solution

was pipetted onto the platinum cathode and then covered with a PTFE membrane.

The electrode chamber was filled with aerated water and flushed with nitrogen gas

to establish a zero baseline measurement. Calibration was done at room temperature

(22°C).

3) Starting from the lowest optical density (OD600) reading (typically ~0.25), a 1 ml cell

suspension was pipetted into the electrode chamber. The reading was then taken for

between 2–5 minutes. The OCR at that particular OD600 was measured as the slope

of the linear part of the curve (between the red lines in Figure 3.6) and expressed as

nmolO2
ml−1 s−1. After every measurement the cells were aspirated and the chamber

flushed with clean water. Step 3) was repeated for increasing OD600 readings up to

about OD600 of about 0.5. The maximum OD600 was limited by the fact that as the

cell density increased in the chamber, the length of time for which a linear part of the

curve can be obtained was decreased. The maximum OD600 for each condition was

around 0.5–0.6. A curve for OCR as a function of cell optical density OD600 was then

fitted (Figure 3.7). The shaded bands represent the bootstrapped 95% confidence in-

tervals of the fitted OCR values.

4) OCR normalized to unit mass of cells was obtained by measuring the dry mass of

cells at an OD600 of approximately 0.5 for each of the experimental growth conditions.

Cell mass was obtained by growing ~8 ml of yeast cell culture in a weighted conical

glass tubes (Corning 99502-15), to an OD600 of approximately 0.5. The glass tube was

then centrifuged for 15 minutes at 3000g to pellet the cells and the supernatant dis-

carded. The glass tube was then oven dried at 70°C for two to three days. The glass
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tube was weighed again and the dry mass of cell obtained by taking the difference

of the two weights, expressed as mg ml−1 normalized to OD600=0.5. All dry weight

measurements were repeated at least 5 times.

5) OCR was also normalized to cell number per ml at OD600=0.5. Cell number was

obtained by growing yeast cells to about OD600=0.5. A 1µl sample was placed into

a hematocytometer (model 3100, Hausser Scientific, PA) and a cover slip was placed

over the chamber. The counting chamber consisted of a predefined volume of liquid

0.1µl. The central square in the hematocytometer consisted of a volume of 0.004µl.

The square was ruled into 25 groups, so each group held a volume of 0.000 25µl. The

cells were counted using 5 of the 25 groups in the central square. The average of

these five reading were then multiplied by 250,000 to obtain a cell count per ml. This

number was than normalized to the OD600 it was taken at (~0.5) to obtain an average

number of cells per ml per unit OD600 reading. All cell counts were repeated at least

6 times.

6) OCR was also normalized to average mitochondrial volume for a particular growth

condition. The average mitochondrial volume was calculated from MitoGraph v2.0

by taking the mean total length of the mitochondrial network for that cell condition

(N~100) and multiplying by the cross section, assuming a constant mitochondrial

tubule diameter of 300 nm. For all three methods of normalization (OCR normalized

by dry weight, cell number and mitochondrial volume), the error bars shown in (Fig-

ure 3.8) represent the 95% confidence interval obtained by bootstrapping 1000 sam-

ples of the normalized OCR measurement and the height of the bars represent the

median value for the normalized OCR at OD600=0.5.
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Figure 3.6: Raw oxygen consumption rate (OCR) data from one sampling run at a particular carbon
source and OD600 reading.
A Clark electrode was used to measure OCR of live yeast cells grown at various concentrations (mea-
sured as optical density, OD600). For a particular sampling run, the OCR was calculated as the slope
of the linear region (between the two vertical red lines). Multiple sampling runs at different OD600
readings are repeated to obtain the curve fit shown in Figure 3.7

3.3 Results

We report OCR normalized in three different ways (Figure 3.8). Figure 3.8A shows the

result of OCR in the different carbon conditions, normalized by mitochondrial volume.

The other two subfigures show two standard ways OCR measurement in intact cells are

usually reported in the literature, which are normalization by dry mass (Figure 3.8B)

and cell number (Figure 3.8C). The OCR differences between the carbon conditions are

similar regardless of the normalization methods except for the case of raffinose. In all

cases glucose has the lowest OCR, lactate the highest and glycerol+ethanol intermedi-

ate between the two. Raffinose shows a respiration rate that is either similar to lactate (A

and B) or lower than lactate but still higher than glycerol+ethanol. For the OCR normal-

ized by mitochondrial volume measurements, cells grown in glycerol+ethanol showed

a two fold increase in OCR levels compared to those in glucose (fermentation only con-
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Figure 3.7: Respiration rate (OCR) as a function of optical density (OD600).
OCR readings from multiple sampling runs at different cell concentrations (OD600) were plotted for
cells grown in various carbon sources. The curve fit allows one to obtain the OCR at the OD600=0.5
which we used as the standard OD reading to obtain normalized OCR by mass, cell number and mito-
chondrial volume.
Shaded band represent the bootstrapped 95% confidence interval for the fitted values.
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(A) OCR normalized by mitochondrial volume

(B) OCR normalized by dry mass

(C) OCR normalized by number of cells

Figure 3.8: Oxygen consumption rate (OCR) of yeast in different carbon sources.
OCR readings of yeast cells from sample volumes of 1 ml at OD600=0.5 were normalized by mitochon-
drial volume (A), dry mass (B) or cell number (C). Different normalization methods result in differ-
ent rankings of mitochondrial OCR in the different carbon sources. However mitochondria grown
in glucose (fermentation condition) consistently showed the lowest mitochondrial OCR due to glu-
cose repression. OCR normalized by mitochondrial volume is the most appropriate way to compare
mitochondrial respiration rate as mitochondrial volume is a direct measurement of the amount of mi-
tochondria in the sample volume. The other two methods scale not just with the amount of mitochon-
dria in the sample volume but also cell size and numbers. OCR in glycerol+ethanol showed a two fold
higher normalized OCR rate (Figure 3.8A) compared to glucose, while lactate and raffinose show a
three fold higher normalized OCR rate compared to glucose.
Error bars indicate the bootstrapped 95% confidence interval of the median OCR value.

47



ditions). Cells grown in lactate and raffinose show a three fold increase in OCR levels

(lactate and raffinose had no significant difference in their OCR rate normalized to mito-

chondrial volume, evidenced by the error bars overlapping in Figure 3.8A).

We believe OCR normalized to total mitochondrial volume calculated from MitoGraph

v2.0 is the most specific measure to show how mitochondrial respiration is affected

by changes in growth conditions. Normalization by cell number does not account for

changes in the proportion of the cell volume that is occupied by mitochondria (volume

ratio) between different growth conditions. It cannot differentiate increased respira-

tion due to there been more cells or because the cells have increased mitochondrial

volume ratio. Normalizing by dry mass of cell also suffers from this problem; it cannot

differentiate increased respiration due to there been more cells, and hence total mass

or if specific cell mass increased due to increased mitochondrial volume ratio (or even

if specific cell mass increased due to non mitochondrial content). An alternative OCR

normalization method is normalizing by mitochondrial associated protein content.

The OCR levels for raffinose was surprising as we predicted it would be intermediate

between the non-fermentable glycerol+ethanol and glucose substrates. Furthermore, ΔΨ

levels did not correlate perfectly with OCR for the case of raffinose, glycerol+ethanol

and lactate (Figure 3.9). Cells grown in glycerol+ethanol displayed the highest average

ΔΨ level while having OCR intermediate between glucose and lactate/raffinose. These

unexpected results are discussed further in the next section.

3.4 Discussion

The literature has sparse references for basal OCR rate fold differences between yeast

cells grown in different carbon sources under aerobic, exponential growth. Most stud-
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(A) OCR normalized by mitochondrial volume

(B) Mean volume ratio of population

(C) Mean ΔΨ of population

Figure 3.9: The relationship between mitochondrial OCR, membrane potential (ΔΨ) and amount density
(vol ratio) of yeast grown in different carbon sources.
Shown here is the relationship between mitochondrial OCR (A) and its relationship with the amount
density of mitochondria in the cell (volume ratio, B) and ΔΨ (C). Mitochondria from cells grown in
glycerol+ethanol display the highest ΔΨ levels and an intermediate respiration level, while those from
cells grown in lactate display and intermediate level of ΔΨ and the highest respiration rate. We believe
our results is due to lactate been oxidized less efficiently by the mitochondrial respiration machinery,
hence the mitochondrial amount is increased in lactate to compensate for a lesser cellular respiration
efficiency. Raffinose displays similar levels of ΔΨ and respiration rates with lactate, while displaying a
lower volume ratio of mitochondria. We believe that cellular respiration in raffinose is also less efficient
that in glycerol+ethanol, but is able to maintain growth fitness by also undergoing fermentation.
Error bars indicate the bootstrapped 95% confidence interval of the median OCR value.
White bars indicate median values.
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ies used only one type of carbon condition (glucose) and therefore oxygen consump-

tion rates are readily available for yeast grown in glucose [78]. One study measured the

amount of basal respiration change as the amount of ethanol was slowly increased in

yeast cells grown in glucose. They reported that respiration rate increased 50% when

ethanol concentration was at 2.5%. However this was done on stationary phase (non pro-

liferating) cells. Another study measured yeast grown in glucose repressing concentra-

tions (2%) and non respiration repressing concentrations (0.5%) and found that respi-

ration was increased two fold [79]. No direct numbers could be found for basal OCR of

yeast cells grown in glycerol, most likely because most often glycerol was considered as

a byproduct of yeast metabolism rather than as a substrate in traditional yeast bioener-

getic studies [69, 80]. However according to one reference [81] only 10% of the glycerol

content is used by yeast grown on glycerol+ethanol.

One study using lactate limited concentrations (0.2%) reported OCR normalized to

dry mass levels less than half of our results [82], but we caution that this result is not

directly comparable as their growth media was substrate limiting, used a synthetic

yeast nitrogen media without amino acids and had slower growth rate (doubling time

4 hrs vs 3.1 hrs). Lactate is oxidized to pyruvate by a lactate:cytochrome c oxidoreductase

complex and donates its electrons directly to cytochrome c, at the terminal end of the

ETC. It has been reported that this serves as a shunt [67], bypassing complex I, II and

III. Thus because of the low proton motive force generated, one molecule of lactate only

generates one ATP equivalent and hence lactate is a poor carbon source. Furthermore

due to the fact that pyruvate oxidation can occur in the cytosol in yeast via the pyruvate

dehydrogenase bypass [72], ATP yield is further reduced. Indeed it is known that the

ATP/oxygen ratio of lactate is up to 50% less than ethanol [83]. The high respiration

reported here could be an indication that respiration is upregulated to make up for

this poor ATP/oxygen ratio (known as coupling efficiency). Evidence for this is that in

the previously mentioned study which used substrate limited concentrations of lactate
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(0.2%), respiration rates were much less than our non substrate limited concentrations

(2.0%). However mitochondrial density is much higher than in glycerol+ethanol (Fig-

ure 3.9B), perhaps suggesting a compensatory upregulation of mitochondrial biogenesis

to meet metabolic demands. Our growth rates for glycerol+ethanol and lactate are com-

parable (~2.9 hours for glycerol+ethanol vs 3.1 hrs for lactate, refer to growth curves in

Figure A.2), so there is evidence that cells grown in lactate have similar growth fitness

with glycerol+ethanol even though lactate is a less efficient fuel source.

One study showed basal OCR levels around three fold higher in raffinose compared

to glucose [84], which is in good agreement with out results. However it is rather puz-

zling why raffinose which is considered to be able to undergo fermentation and respi-

ration simultaneously would have a higher basal respiration rate compared to the non-

fermentable carbon substrate glycerol+ethanol. One possibility is that high respiration

levels seen in raffinose compared to glycerol+ethanol is due to high uncoupled respi-

ration levels, which is further supported by the lower ΔΨ levels seen in raffinose com-

pared to glycerol+ethanol (Figure 3.9C).

The best way to check whether respiration is less efficient in raffinose and lactate com-

pared to in glycerol+ethanol is to measure respiratory control ratio (RCR). RCR is the

ratio of the respiration levels at state 3 to state 4. A high RCR indicates a high level of

respiration capacity with a low level of proton leak. Another similar parameter is the

spare respiratory capacity, which is the difference between state 3 and basal respiration

rate. This parameter indicates the capacity of the mitochondria to respond to an increase

in energy demand. RCR is a complex function that depends on numerous factors such

as the substrate given. Based on our hypothesis that mitochondrial respiration is less ef-

ficient in lactate and raffinose compared to glycerol+ethanol, we expect RCR values to be

lower as well.
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Measurement of RCR in yeast cells is problematic due to having to permeate the cell

wall prior to addition of ETC chain inhibitors to achieve state 3 and 4 [85]. Measurement

of RCR using the Clark electrode is also difficult because the ability to add inhibitors

to the sample during a measurement run is limited and multiple parallel experiments

have to be conducted to obtain RCR parameters. We propose the use of the Seahorse sys-

tem [86] to measure RCR. This system uses a piston to reversibly enclose a small volume

(~2µl) above the cell layer. A probe containing a fluorophore is inserted into the cham-

ber and measures the oxygen concentration by quenching of the fluorophore. The piston

is then raised to allow the bulk media to reequilibrate. This system offers a convenient

way to measure all the parameters related to cell respiration in one run, as up to four ad-

ditions of inhibitors can be made per run.

Another possible reason that raffinose show lower respiration efficiency is that it might

be somehow substrate limited. Certain common yeast lab strains lack the enzyme to

metabolize melibiose, which is the form of glucose+galactose found in raffinose. How-

ever we found that our lab strain grew normally in melibiose (image data shown in Fig-

ure A.3), therefore the yeast cells we used grown in raffinose were not substrate limited.
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Chapter 4

Membrane potential heterogeneity at the

mitochondrial tubule level
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4.1 Introduction

Mitochondria are double membrane organelles consisting of an outer membrane and

an inner membrane. The inner mitochondrial membrane (IMM) is impermeable to most

ions and metabolites. There are two distinct regions of the inner membrane [36], the in-

ner boundary membrane and the cristae membrane (Figure 4.1). The cristae membrane

forms invaginations into the matrix and represents the majority of the surface area of the

IMM. Electron transport chain (ETC) and oxidative phosphorylation (OXPHOS) proteins

are concentrated in the cristae [11]. This enrichment in the cristae is thought to mediate

efficient synthesis of ATP [15].

Advances in imaging techniques in the last decade have enabled research into the

changes in the IMM structure in relation to the bioenergetic and disease state of the

mitochondria. Mitochondria in State 3 (high respiration, ATP synthesis activity) have in-

creased number and size of cristae compared to mitochondria in State 4 (low respiration,

no ATP synthesis). Abnormal cristae morphology is observed in mitochondrial diseases

such as Leber hereditary optic neuropathy (LHON) [87] and neurodegenerative diseases

such as Huntington’s and Parkinson’s disease [88, 89].

The quality and bioenergetic state of mitochondria is intimately linked to mitochondrial

membrane potential (ΔΨ). The electric potential generated across the inner membrane

by ΔΨ provides the energy potential to drive ATP synthesis, as well as playing a role

in ROS production, mitochondrial fusion dynamics [90] and mitochondrial biogenesis

via protein import. It has been proposed that cristae can effectively create a high resis-

tance narrowing of the matrix lumen, effectively compartmentalizing the mitochondria

into electrically distinct regions [15]. This would make it possible to observe heteroge-

neous distributions of ΔΨwithin a single mitochondrial tubule due to this electrical

compartmentalization by the cristae. This is thought to benefit ATP synthesis by pro-
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Figure 4.1: Inner mitochondrial membrane structure contributes to ΔΨ heterogeneity.
Shown in this figure is a mitochondrial tubule displaying ΔΨ heterogeneity (higher ΔΨ levels in red,
lower ΔΨ in blue). A transmission electron microscope (TEM) cross section of a real yeast mitochon-
drial tubule is shown in the top right image. The image was from a chemically fixed, immuno gold
labeled cryosection of yeast grown in 2% lactate. The double membrane structure of the mitochondria
is visible (white edges) and the ultrastructure detail of a cristae region is shown in the top left image.
Scale bar: 100 nm
TEM images adapted from Figure 1 of Vogel et al., ”Dynamic subcompartmentalization of the mitochondrial
inner membrane”, J Cell Biol 2006, doi:10.1083/jcb.200605138
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viding a local region of high proton motive force near the cristae membrane [91], where

the majority of the OXPHOS proteins are located. Whether ΔΨ can actually form hetero-

geneous distributions in a single mitochondrial unit is an active research field [76, 92, 93]

because of the significance of the relationship between mitochondrial network structure

and function in health and disease [76]. The following is a brief summary of previous

studies on the distribution of ΔΨwithin a mitochondrial tubule.

One study claimed that the ΔΨ field is equipotential across a single mitochondrial net-

work [16]. They showed this by laser photobleaching a small area of the network and

observed that the rest of the network promptly depolarized. Other studies found that

staining with JC-1 (a ratiometric membrane potential dependent dye) resulted in signif-

icant voltage gradients along a single mitochondrial tubule [94, 95]. Neither studies are

conclusive because firstly a diffuse depolarization of ΔΨ on local damage does not nec-

essarily imply a homogeneous distribution of ΔΨ, while the JC-1 dye has been known to

display aggregation artifacts.

One study provided evidence for the existence of discrete domains of ATP synthase clus-

ter located at the inner membrane invaginations [96]. It is not hard to imagine that there

might exist a local concentration of ΔΨ where these ATP clusters are located. One of the

very first studies on ΔΨ heterogeneity within a single mitochondrial segment used hu-

man fibroblasts and astrocyte cells stained with a Nernstian membrane potential dye,

TMRM [97]. They picked several distinct segments of mitochondria from a single cell

and plotted the distributions of the ΔΨ within each mitochondrial segment. They found

that the inter-mitochondrial ΔΨ variance was much higher than the variance within a

single mitochondrial segment, and based on this result concluded that the ΔΨ distribu-

tion was homogeneous within a single segment. However it is not clear that all of the

individual mitochondrial segments picked were really distinct units, because mitochon-

dria in mammalian cells tend to pile up and are difficult to separate out even by eye. In-
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deed their own data showed that for several mitochondrial segments adjacent to each

other, the variation in ΔΨwas high between these segments.

The difficulty in establishing a consistent pattern of heterogeneity is due in part to a lack

of using the proper quantitative tools to establish a baseline ’control’ distribution of ΔΨ

within a mitochondrial tubule. Without a baseline the previous studies could not conclu-

sively state what is a homogeneous or heterogenous distribution of ΔΨ. Here we present

an investigation into the distributions of ΔΨ in mitochondrial tubules using standard sig-

nal processing techniques (autocorrelation, spectral analysis etc). We show evidence for

the existence of nonrandom heterogeneity of ΔΨ within a single mitochondrial tubule.

We also investigated the distribution of ΔΨ in mitochondria growing in different res-

piratory states and found a statistically significant difference in their spatial frequency

content.

4.2 Materials and Methods

Cell growth conditions, preparation and imaging methods were carried out as in

section 2.2. The cells were grown in four different carbon sources as detailed in sec-

tion 3.1.4. The number of cells N in each carbon source were—glucose (N=96), glyc-

erol+ethanol (N=111), lactate (N=117) and raffinose (N=96).

4.2.1 Sampling of random distributions

The random distributions shown in (Figure 4.2) were obtained as follows: For each cell,

let the mitochondrial network with a total of 𝑁 pixels be a vector of signal intensities

{𝑋0, 𝑋1 ⋯ 𝑋𝑁−1}, where the subscripts indicate the order indices of the pixels. The signal

intensities represent the normalized ΔΨ as described in Chapter 2. The indices represent
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(A) ΔΨ distribution in all tubules from a single cell. The x-axis represents a coordinate system where all
the tubules in that cell are lined up end to end. The vertical dotted lines indicate the boundaries of a
tubule within that cell. The red box highlights a single tubule and is shown in more detail in the Fig-
ure 4.2B.

(B) ΔΨ distribution in a single tubule from the same cell (highlighted by the red box in Figure 4.2A).

Figure 4.2: Tubule level ΔΨ heterogeneity in actual and random distributions.
Mitochondrial membrane potential (ΔΨ) distribution in tubules are plotted and compared with fitted
random distributions. The three random distributions below the ’Actual’ distribution represent base-
line levels of mitochondrial ΔΨ homogeneously distributed with random variations due to optical and
experimental conditions. Actual distributions of ΔΨ display much smaller variation in ΔΨ between
adjacent pixels.
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the coordinates of the pixels along an imaginary one dimensional axis that would be

obtained from lining up all the tubules in the mitochondrial network end to end.

We calculate the sample mean and variance of this set, ν and τ2 as follows:

At each pixel position, we sampled from a normal distribution 𝑁(ν , τ2) to get sampled

intensities {𝑋𝑠0, 𝑋𝑠1 ⋯ 𝑋𝑠𝑁−1}. This is was then plotted as the ’Normal’ distribution graph

shown in Figure 4.2. A similar procedure was used for the ’Uniform’ distribution graph,

where we sampled from a uniform distribution 𝑈(ν − 1.5τ , ν + 1.5τ) at each pixel po-

sition. The range of the uniform distribution was chosen so as to approximate a distri-

bution that encompassed 99.7% of the Normal distribution range. For the ’Shuffled’ dis-

tribution graph, we randomly permuted the set of original signal intensities to get a per-

muted set {𝑋𝑝0, 𝑋𝑝1, ⋯ 𝑋𝑝𝑁−1}, where for example, the signal intensity 𝑋𝑝0 represents the

randomly shuffled signal intensity at the pixel position 0.

4.2.2 Autocorrelation curves

The autocorrelation coefficient 𝑅(𝑘) measures the ’memory’ of a signal by correlating

pairs of points within the signal separated by a lag distance, 𝑘. A high value of autocor-

relation at large lag distances implies that the signal has memory at large length scales.

The autocorrelation curves for Figure 4.3 and Figure 4.4 were derived as follows: For a

single tubule of length 𝑁 with signal intensity {𝑋0, 𝑋1 ⋯ 𝑋𝑁−1} the autocorrelation coeffi-

cient 𝑅(𝑘) as a function of pixel lag distance 𝑘, was calculated as [98]:

𝑅(𝑘) = 1
(𝑁 − 𝑘)τ2

𝑁−𝑘
∑
𝑡=1

(𝑋𝑡 − ν)(𝑋𝑡+𝑘 − ν)

for 𝑘0, 𝑘1 ⋯ 𝑘15 (4.1)
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The terms ν and τ are the sample mean and variance of the tubule respectively. Since

we are using the sample mean and variance, the autocorrelation coefficient is a biased es-

timate. We restricted our tubules to a minimum length of 40 pixels to minimize the bias

error from using the sample mean and variance while ensuring we had enough tubules

to obtain sufficient statistical power. For the populations of tubules from the various car-

bon source we had a range of 144–250 tubules with this minimum length (glucose=144,

glycerol+ethanol=218, lactate=230, raffinose=177). This represented 10–15% of the total

tubule population. We then averaged all the autocorrelation coefficient at a given lag

distance 𝑘 and plotted the mean autocorrelation curve for tubules with this minimum

length. Tubules from populations of cells from random distributions (Figure 4.3) and

growing in different carbon sources (Figure 4.4) were plotted.

Figure 4.3: Autocorrelation curves of actual vs random distributions.
Shown here is the autocorrelation coefficient distribution of a real population of cells (green curve,
grown in glycerol+ethanol) and three random populations. The autocorrelation of ΔΨ distribution
from a real population of mitochondrial tubules displays higher autocorrelation coefficients at large
length scales (lag distance) compared to random distributions.
Error bars represent the bootstrapped 95% confidence interval of the mean.
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Figure 4.4: Autocorrelation curves of populations of cells growing in different carbon sources .
Shown here are the autocorrelation coefficient distributions of cells grown in either fermentation (glu-
cose), respiration only (glycerol+ethanol, lactate) and respiration+fermentation (raffinose). Mitochon-
drial tubules grown in the different conditions do not show a statistical difference in their autocorrela-
tion curves.
Error bars represent the bootstrapped 95% confidence interval of the mean.

4.2.3 Power spectral density

The power spectral density (PSD) is defined as the square of the modulus of the

Fourier transform of a signal and is a measure of the spatial frequency content of the

signal. Spatial frequency is the inverse of spatial length, a higher spatial frequency im-

plies a smaller length scale [99]. For a single tubule of length 𝑁 with signal intensity

{𝑋0, 𝑋1 ⋯ 𝑋𝑁−1} and sampling rate of Δ𝑡 = 1 pixel, the power spectral density 𝑆(𝑓 ) as

a function of spatial frequency 𝑓 is estimated as the modulus squared of the discrete

Fourier transform (DFT) [98]:

𝑆(𝑓 ) = Δ𝑡
𝑁

∣∣∣∣

𝑁−1
∑
𝑡=0

𝑋𝑛 exp−𝑖2ρ𝑛𝑓 ∣∣∣∣

2

𝑓 ≤ 1
2Δ𝑡 for real frequencies (4.2)
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Figure 4.5: Power spectral density of actual vs random distributions.
Shown here is the power spectral density of a real population of cells (green curve, grown in glyc-
erol+ethanol) and three random populations. The power spectral density of ΔΨ from a real population
of mitochondrial tubules displays much more power at lower spatial frequencies (i.e. higher correla-
tion at larger length scales) compared to random distributions (observe the high power on the y-axis at
values of <0.1 for the x-axis compared to the random distributions).
Error bars represent the bootstrapped 95% confidence interval of the mean.
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Figure 4.6: Power spectral density of populations of cells growing in different carbon sources.
Shown here are the power spectral densities of cells grown in either fermentation (glucose), respiration
only (glycerol+ethanol, lactate) and respiration+fermentation (raffinose). Mitochondrial tubules grown
in respiration and fermentation (glucose) do not show a statistical difference in their spatial frequency
content.
Error bars represent the bootstrapped 95% confidence interval of the mean.

We calculated the power spectral density using the Numpy.fft.rfft module (http://www.

numpy.org/), which calculates the DFT for real input functions. Since we are limited to a

sampling resolution of 1 pixel, the maximum frequency we can get will be 0.5 cycles/per

pixel. Ideally 𝑁 should be as large as possible to get the ’true PSD’, i.e. with larger 𝑁 we

will get finer resolutions of 𝑆(𝑓 ). Similar to the derivation of the autocorrelation curve,

we restricted our tubules population to be a minimum of length 40 pixels so that we get

a minimum of 20 values of 𝑓 between 0–0.5 cycles/pixel. The DFT returns positive and

negative frequencies; we ignore negative frequencies for real spatial values. We then av-

eraged the function by spatial frequency 𝑓 and plotted the mean 𝑆(𝑓 ) curve for all the

tubules in the population. Tubule populations of cells from random distributions and in

different growth conditions were plotted (Figure 4.5 and Figure 4.6).
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By the Wiener–Khinchin theorem [100], the power spectral density 𝑆(𝑓 ) is the Fourier

transform of the autocorrelation function 𝑅(𝑘):

𝑆(𝑓 ) =
∞

∑
𝑘=−∞

𝑅(𝑘) exp−𝑖2ρ𝑛𝑓 (4.3)

Therefore we can think of the power spectral density as the frequency transformed ver-

sion of the information provided by the autocorrelation curves. A power spectrum that

has high power at low frequencies implies a greater correlation at large length scales.

4.2.4 Delta intensity Δ𝐼(𝑘)

One problem with using autocorrelation is that we are using a biased estimate of the

autocorrelation due to using the sample mean and variance of the tubule. Therefore in

order to minimize the sample bias we restricted the tubule population to a minimum

length 40 pixels, but this meant we were excluding a large proportion of tubules that fell

below this threshold (up to 90% of the tubules). Referring to (4.1), the terms inside the

summation represent the covariance between points on the tubule. Instead of using the

covariance, we defined another function Δ𝐼(𝑘):

Δ𝐼(𝑘) =
∣∣∣∣

𝑁−𝑘
∑
𝑡=1

𝑋𝑡 − 𝑋𝑡+𝑘
∣∣∣∣

for 𝑘1, 𝑘5, 𝑘10, 𝑘15, 𝑘20 (4.4)

This function represents the absolute difference of intensities between a pixel and an-

other pixel separated by lag distance 𝑘. A large value of Δ𝐼(𝑘) at small lag distances 𝑘

indicates that there is little correlation between those two pixels, and a high spatial fre-

quency component to the signal. We averaged the function at a given lag distance 𝑘 and

plotted the mean Δ𝐼(𝑘) curve for all the tubules in the population. Tubule populations
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Figure 4.7: Actual and random delta intensity (Δ𝐼(𝑘)) curves.
The plot shows a panel of delta intensity Δ𝐼(𝑘) distributions for the populations of cells grown in dif-
ferent carbon sources. The top left pane shows the Δ𝐼(𝑘) of the actual populations of mitochondrial
tubules grown in different carbon sources. The top right and bottom panels show the Δ𝐼(𝑘) distribu-
tion of the random distributions (Shuffled, Uniform, Normal) plotted for each of the carbon sources.
Mitochondrial tubules in all of the different carbon sources show non random distribution of Δ𝐼(𝑘).
Error bars represent the bootstrapped 95% confidence interval of the mean.
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Figure 4.8: Δ𝐼(𝑘) actual for tubule populations growing in different carbon sources.
Mitochondrial tubules in fermentation (glucose) have lower Δ𝐼(𝑘) at lag distances below 15 pixels,
meaning that they show lower spatial frequencies and higher correlations at large length scales com-
pared to respiratory conditions.
Error bars represent the bootstrapped 95% confidence interval of the mean.

of cells from random distributions and in different growth conditions were plotted (Fig-

ure 4.7 and Figure 4.8).

4.2.5 Statistical testing with post-hoc multiple testing correction

In this project, whenever we made a statistical test comparing two conditions we used

the ranked sum test with 𝑝 < 0.05 as the significance level to reject the null hypothesis

that there was no difference between the two conditions. When performing statistical

testing across multiple conditions, there is an increasing probability of making a false

positive (Type I error) across all tests. This probability is known as the family wise error

rate (FWER) and is given by the formula:

FWER = 1 − (1 − 𝑝)𝑛 (4.5)
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𝑝 is the significance level for one comparison and 𝑛 is the number of comparisons. For

our project, with four different carbon conditions there are six possible combinations,

and at a typical significance level where we reject the null hypothesis of 𝑝 = 0.05, the

FWER is ~27%. Thus it is critical that all statistical tests be corrected for multiple test-

ing with a post-hoc correction method. We used the Holms-Sidak [101] multiple test-

ing correction method which has been shown to have more statistical power [102] (i.e.

more likely to detect an effect if the effect really existed) than the popular Tukey or Bon-

feronni methods while ensuring that the FWER is less than 0.05 (thus avoiding false

positives due to multiple testing). The Holms-Sidak method is a recursive step-down

method where the 𝑝 values are ranked and compared with successively larger adjusted

significance levels. The method is guaranteed to control the FWER which we set at 0.05,

but the disadvantage is that we cannot obtain the confidence intervals from the test. We

do not require a confidence interval in our analysis for this chapter as we are only inter-

ested in whether there is a difference between the groups.

The above procedure was carried out using the StatsModels package in Python (http:

//statsmodels.sourceforge.net/devel/generated/statsmodels.sandbox.stats.

multicomp.multipletests.html).

4.3 Results

4.3.1 Mitochondrial tubules have nonrandom heterogeneity of ΔΨ

In order to conclusively determine whether heterogeneity of ΔΨ exists within mitochon-

drial tubules, we must first establish a baseline to decide if a ΔΨ distribution is truly

heterogeneous. We do this by comparing the distributions of the signal intensities to

random distributions of ΔΨ intensities. In Figure 4.2 we show three different types of
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random distributions (’Normal, Shuffled, Uniform’) below an actual distribution of ΔΨ.

These three random distributions represent a ’control’ or baseline level of ΔΨ homoge-

neously distributed with random variations due noise in the optics and experimental

conditions. The Shuffled distribution is the most conservative estimate of a true random

baseline as it is non parametric and does not need any estimation of the distribution pa-

rameters. The Normal distribution represents a random distribution of ΔΨ that would

be observed with a Gaussian uptake level of the ΔΨ dye. The Uniform distribution rep-

resents uniformly constant dye uptake and variances due to optical and experimental

setup.

The observed actual distribution differs from the random networks of ΔΨ intensities as

they show smaller variations in intensities between adjacent pixel positions (Figure 4.2B).

In order to quantify this difference between actual and random distributions, we calcu-

lated the autocorrelation, power spectral density and delta intensity curves for the pop-

ulation of tubules of actual and random distributions using the methods described in

section 4.2.

As shown in Figure 4.3 the correlations of ΔΨ intensities in actual tubule distributions

decay much slower than random networks, i.e. they are correlated over larger length

scales. This is also shown in Figure 4.5, where the spectrum of the random distributions

is much more ’spread out’ compared to real distributions, i.e. they have higher powers

at higher spatial frequencies. The crossover point for the spectrum of real and random

distributions is around 0.1 cycles/pixel, i.e. real networks do not seem to have much cor-

relations in their signal intensities beyond length scales >10 pixels.

Similar behavior is exhibited in Figure 4.7, where the random distributions exhibit much

larger change in their Δ𝐼(𝑘) at small lag distances and that real distributions effectively

become random at lag distances ~10 pixels (compare ’real’ to ’shuffled’ in Figure 4.7).
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4.3.2 Mitochondrial tubules in respiratory conditions have less cor-

relation of ΔΨ at large length scales compared to fermentative

conditions

The existence of heterogeneity within a mitochondrial tubule leads us to ask if this het-

erogeneity is affected by the bioenergetic state of the cell. Previous studies have shown

that OXPHOS proteins and cristae numbers are upregulated in mitochondria when res-

piration demand increases [96, 103]. These changes to the ultrastructure have the poten-

tial to affect the heterogeneity of ΔΨwithin the tubule. In order to determine how ΔΨ

heterogeneity was affected by the functional state of the mitochondria, we compared the

heterogeneity of ΔΨ between cell populations grown in different carbon sources. Yeast

were grown aerobically and under exponential growth in four different carbon sources -

glucose, glycerol+ethanol, lactate and raffinose (details in section 3.1.4).

Figure 4.9: Distribution for Δ𝐼(𝑘 = 1).
Violin plots for the distributions of Δ𝐼(𝑘) in tubules, showing that there is a statistically significant
lower value of Δ𝐼(𝑘) at small lag distances for glucose, compared to the other three conditions which
undergo respiration. Mitochondrial tubules grown in glucose have less power at high spatial frequen-
cies.
White bars indicate the median for the population.
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We did not find a statistically significant difference in the autocorrelation curves or

power spectral densities of the different growth conditions (Figure 4.4 and Figure 4.6).

This is evidenced by the fact that the confidence intervals indicated by the error bars

overlap between the different populations. This was surprising because we expect

to see a difference between the respiratory (non glucose) and fermentative (glucose)

conditions, as previously reported [96]. However it must be noted that the autocor-

relation/power spectral density measures suffer from the fact that we clustered the

tubules according to their lengths and it is difficult to compare all the tubules in a

cell/population. The Δ𝐼(𝑘) function (Figure 4.8) is able to obtain a more complete pic-

ture of tubule level heterogeneity across a wider range of tubule lengths. Using this

method, we find a difference in heterogeneity characteristics between respiration and

fermentation populations. Respiratory conditions have higher spatial frequencies and

have less correlations at large length scales compared to fermentative conditions. This

is evident in (Figure 4.9), where we plot the distributions of Δ𝐼(𝑘 = 1). There is a sta-

tistically significant difference in the mean Δ𝐼(𝑘 = 1) value between respiratory (non

glucose) and fermentative (glucose) conditions (statistical test procedure done as in sec-

tion 4.2.5). Fermentative condition tubules have lower spatial frequencies and are more

correlated over large length scales. They also seem to approach random distribution

heterogeneity at a slower rate compared to respiratory tubules.

4.3.3 Mitochondrial tubules in respiratory conditions have thicker

width and more uniform distribution of thickness compared to

fermentative conditions

It has been reported that mitochondrial tubules growing in glycerol as the sole carbon

source had a 6% thicker tubule diameter compared to cells growing in glucose [48]. We
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(A) The Pearson correlation 𝑅 values between mitochondrial matrix marker intensity and tubule thickness
show a mean value of ~0.35 for all the carbon conditions.

(B) The variation between average (per cell) matrix marker intensity between the cells grown in different
respiration conditions (non-glucose) show a large, statistically significant difference compared to the
average tubule thickness shown in (Figure 4.11).

Figure 4.10: Tubule thickness variation is not an artifact of matrix intensities.
Mitochondrial matrix marker intensities do not show strong correlation with tubule thickness (Fig-
ure 4.10A). The variation in matrix intensity is also much higher than the variation in tubule thickness
(Figure 4.10B). Therefore measurements of tubule thickness derived from MitoGraph v2.0 are likely not
affected by variations in matrix marker intensities.
Error bars represent the bootstrapped 95% confidence interval of the mean.
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Figure 4.11: Distribution of mean tubule diameter per cell per population.
The mean tubule diameters in respiration (non glucose) are statistically greater than the tubules in
fermentation. The tubules are on average 2.6% greater than in glucose.
White bars indicate the median value.

analyzed the tubule diameter of our data using an algorithm in MitoGraph v2.0 that cal-

culates the radius of the tubule at any point along the skeleton based on the surface ren-

dered image of the tubule. Standard image intensity segmentation of tubules tend to

result in brighter tubules having a wider segmentation diameter (in other words appear

thicker). MitoGraph v2.0 uses various image processing techniques to segment the mito-

chondrial tubule from the background image in a way that is independent of the image

intensity of the tubules. In order to validate this, in (Figure 4.10A) we show the correla-

tion between the mean intensity for the mitochondrial structural marker (mRuby2, a ma-

trix targeted fluorescent protein, section 2.2.2) and the mean tubule width is low (~0.35)

and importantly, not significantly different across the four carbon sources. This means

that any difference seen in tubule width between the conditions is not due to intensity

variations between the conditions. In addition, in (Figure 4.10B), the variation in mito-

chondrial structural marker intensity between the three respiratory conditions is signif-

icantly different, while the variation of the tubule width among the three conditions is

not. In other words, the variation in image intensity is much higher than the variation in
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Figure 4.12: Autocorrelation and Δ𝐼(𝑘) curves of tubule diameter heterogeneity.
The Δ𝐼(𝑘) curve for tubule diameter indicate that tubules grown in glucose (fermentation) have a
higher tubule thickness heterogeneity at small length scales/lag distances. No statistical difference
were seen in the autocorrelation curves for tubule diameter.
Error bars represent the bootstrapped 95% confidence interval of the mean.
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tubule thickness, thus we feel confident in reporting our tubule thickness results are not

due to an artifact of image segmentation.

In Figure 4.11 we see that there is a statistically significant difference in tubule diameter

between populations in respiration and fermentation. Mitochondrial tubules undergo-

ing respiration have an average 2.6% thicker tubule diameter compared to tubules un-

dergoing fermentation. There was no difference in tubule diameter between the three

respiratory conditions. Statistical testing was done as in section 4.2.5. When comparing

the heterogeneity of the tubule thickness distributions (Figure 4.12), we do not see a dif-

ference in the autocorrelation curves between tubules in respiration and fermentation.

However when comparing the Δ𝐼(𝑘) curves, there is a statistically significant higher

value of Δ𝐼(𝑘) at lag distances of 1 pixel for the fermentative condition compared to the

respiratory condition. Therefore we conclude that tubules in fermentation have a higher

tubule thickness heterogeneity compared to in respiration.

4.4 Discussion

In the study by Jimenez et al. [96], they showed that ATP synthase cluster into discrete

domains, which they called F1F0-cluster domains. Importantly, they showed that these

domains were localized to cristae membrane regions. They also showed that as growth

condition was altered from a fermentative to respiratory state, the number of these clus-

ter domains increased. Our results in section 4.3.2 and Figure 4.8 showed that mitochon-

drial tubules in fermentation have ΔΨ distributions with lower spatial frequencies and

are correlated at larger length scales. In the Jimenez study they showed that the F1F0

cluster domains were widely separated in glucose grown cells. They also showed that as

the number of these cluster domains increased, the signal from the fluorescent protein

markers for these cluster domains would ’smear’ out as the distance between the cluster
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domains would be so small as to be unresolvable optically in their confocal microscope

system. If we consider that F1F0-cluster domains are regions with high OXPHOS activ-

ity we can reasonably predict that these domains would be regions with high ΔΨ. If the

regions with high ΔΨ are separated by large distances, they will show a correlation at

large length scales. This explains our results for tubules in respiration (Figure 4.8). Con-

versely in respiratory conditions where the F1F0-cluster domains are spaced closed to

each other, ΔΨ intensity will show correlation at small length scales (their spectral den-

sity will have a high power component at high spatial frequencies). An important contri-

bution of our study in this chapter is that we showed that this heterogeneity in ΔΨwas

not just an artifact of random ΔΨ intensity variations. Furthermore we observed hetero-

geneity of ΔΨ even in respiratory conditions, which the Jimenez study could not as their

method could not distinguish the signal variations when the F1F0- cluster domains were

very close.

Similar to a study by Egner et al. [48], we observed that mitochondrial tubule diame-

ter increased when grown under respiratory conditions. The magnitude of the increase

is about half that reported (~3% vs 6%), likely due to differences in optical resolution

between our systems. The Egner study used 4Pi microscopy with optical resolution be-

low the diffraction limit, and thus it is not surprising they observed larger tubule width

differences. In fact analysis of electron microscopy (EM) based cross sections of mito-

chondrial tubules showed that tubules in glucose had a mean diameter of about 350 nm

[104, 105] and about 400 nm in lactate [36, 106]. While different imaging methods show

different magnitudes of tubule width increase when moving between fermentation and

respiration, it is clear that mitochondria tubules become thicker when they undergo res-

piration. This is likely due to the increased number of cristae that is apparent in the EM

images of mitochondrial tubules undergoing respiration. What is novel in our results

however, is that we report a change in the distribution of the thickness variation along

a tubule between respiration and fermentation. Specifically tubules from cells grown in
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glucose exhibited higher thickness variations at small length scales compared to respi-

ratory conditions. The fluorescent marker used to label mitochondria marker was tar-

geted to the matrix. Our results seem to indicate that the mitochondrial matrix marker

distribution in glucose grown cells experience some sort of constriction at length scales

smaller than in respiratory condition cells. This is interesting because according to a pre-

vious study [107] mitochondria in low respiration states (State 4) have less number of

cristae, and presumably a less constricted matrix lumen (Figure 4.13). One possible way

to resolve this mystery is to label the outer membrane instead, to see if this tubule thick-

ness heterogeneity result holds.

Figure 4.13: Mitochondria in respiratory conditions display less heterogeneity in cristae density and
tubule thickness compared to fermentative conditions.

It is interesting to note in our result that we see no significant differences in the hetero-

geneity characteristics of mitochondria tubules (both ΔΨ and tubule width) grown in the

different respiratory conditions (i.e. glycerol+ethanol, lactate and raffinose). One possi-

bility is that respiration states are similar in the three carbon sources, hence no changes

in the IMM would be expected. Another possibility is that changes in the IMM are so
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subtle among the respiratory conditions that they are not resolvable by the optics of the

system.

Between the two, we favor the second explanation because from our results in Chap-

ter 3, we know that the respiration rates are different among the three respiratory car-

bon sources. One way to test this is to try to inhibit a respiration pathway that is spe-

cific to just a subset of the carbon sources. For example it is known that lactate oxida-

tion happens directly at the lactate:cytochrome c oxidoreductase complex. Yeast cells are

able to grow normally on lactate substrate when given Antimycin A, a respiratory chain

inhibitor that blocks the transfer of electrons to cytochrome b, which is positioned up-

stream of the lactate:cytochrome c oxidoreductase complex. Thus it would be expected

that under Antimycin A, yeast grown in raffinose would exhibit heterogeneity charac-

teristics more similar to that of glucose (fermentation) while lactate would still retain

normal respiratory heterogeneity characteristics. Yeast cells would not be able to grow

in glycerol+ethanol when given Antimycin A as it has to undergo respiration.

Another interesting followup would be to use a fluorescent protein marker tagged to

the ATP-synthase subunit (similar to the Jimenez study) and apply a membrane poten-

tial dye to see if the F1F0-cluster domains really co-localize with local membrane po-

tential heterogeneity. One difficulty would be that we would not be able to use our mi-

tochondrial matrix targeted marker with mRuby2 as the ATP-synthase would need to

use the emission and excitation spectrum that mRuby2 lies in. This could be overcome

by tagging either the ATP-synthase or the matrix targeted marker with a blue excita-

tion/emission fluorescent protein.
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Chapter 5

Membrane potential heterogeneity at the

mitochondrial network level
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5.1 Introduction

Mitochondria in yeast form a tubular network along the inner periphery of the cell. The

mitochondrial network undergoes dynamic remodeling by fission and fusion events.

The function and mechanisms of these remodeling events have been an active research

field for the last two decades [108]. The proteins that play an essential role in mito-

chondrial fission and fusion dynamics belong to the Dynamin family. In yeast, the key

proteins are MGM1, FZO1 and DNM1. MGM1 (OPA1 in mammalian cells) mediates in-

ner mitochondrial membrane fusion, FZO1 (mitofusin MFN1 and MFN2 in mammalian

cells) mediates outer mitochondrial membrane fusion while DNM1 (DRP1 in mam-

malian cells) mediates fission. Fission and fusion rates are balanced [23]. Deletion or

knockdown of fusion related proteins result in a highly fragmented network while dele-

tion of fission proteins result in a highly branched, ’net-like’ structure [23]. Inhibition of

fusion and fission results in a host of cellular defects resulting from OXPHOS deficien-

cies, mtDNA loss and increased ROS production [27, 109, 110]. In humans, mutations in

the fusion related proteins MFN2 and OPA1 result in mitochondrial and neurodegener-

ative diseases such as Charcot Marie Tooth, dominant optic atrophy (DOA), Parkinson’s

and Alzheimer’s disease [111–113].

The severe consequences of the loss of mitochondrial fusion related proteins imply that

mitochondrial fission and fusion dynamics is tightly integrated with cellular bioener-

getics [114]. Fusion promotes a connected network which is hypothesized to mediate

faster and more effective mixing of mitochondrial proteins [115, 116]. A fused mitochon-

drial network has also been hypothesized to mediate an increase in ATP production via

several pathways including changes to the cristae curvature [117], decrease in proton

leak [118] and by serving as a transmission power cable [16]. This transmission power

cable hypothesis says that fused mitochondrial networks enable the electrochemical gra-

dient from one end of the network to be used at another end. Mitochondrial dynamics
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are required for mitochondrial quality control [22]. In this process, a healthy mitochon-

drial network is maintained by segregation/fission of mitochondrial fragments from the

network and selective fusion of those fragments back to the network. Selective fusion

means that only fragments above a certain quality threshold (as measured by mitochon-

drial membrane potential, ΔΨ) can fuse back to the network [18, 119]. Because healthy

mitochondria are more likely to fuse to the network, most of the observed isolated frag-

ments of mitochondria will be those that are unhealthy/below the threshold for ΔΨ. Fis-

sion can be thought of as a way for the network to protect itself from unhealthy mito-

chondrial fragments. According to the mitochondrial quality control model, isolated mi-

tochondrial fragments that are unable to fuse back to the network are targeted for degra-

dation by the autophagic machinery, a process know as mitophagy.

Figure 5.1: Heterogeneity of structure-function in mitochondrial networks.
Shown here is a region of a mitochondrial network within a yeast cell. Branchpoints representing the
intersection of mitochondrial tubules are shown as the cyan and magenta nodes. The area in red is a
region of high connectivity because the magenta nodes have a higher degree of connectivity (they are
connected to more connected nodes) compared to the cyan and green nodes. Our hypothesis is that
these sites are enriched for ΔΨ based on the increased rate of fusion events occurring in these regions.

Mitochondrial quality control via fission and fusion dynamics imply some level of het-

erogeneity in the distribution of ΔΨ within the network. Functional complementation
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through fusion based mixing and segregation of unhealthy mitochondria through fis-

sion would be unnecessary if mitochondrial quality (as indicated by ΔΨ) was homo-

geneous throughout the network. Previous studies have relied on qualitative descrip-

tions of changes in mitochondrial morphology when undergoing a change in respiration

states [17, 38]. They did not directly quantify the relationship between the topology of

the mitochondrial network and its functional state. In this chapter we investigate the re-

lationship between mitochondrial network structure (topology/connectivity) and func-

tional heterogeneity (ΔΨ) in mitochondrial networks, i.e. whether structural features

of regions within the network is indicative of the bioenergetic state of that region (Fig-

ure 5.1).

The first area that we investigate is the relationship between mitochondrial network con-

nectivity and the density of mitochondrial tubules at the cell surface. We define surface

density as a measure that represents how ’packed’ with mitochondrial tubules a given

cell surface is. We expect that network connectivity should scale with surface density

of the network, because mitochondrial tubules in denser networks would have a higher

probability of encountering and fusing with another tubule. In addition we expect to

see a clear difference between mitochondrial networks in fermentation and respiratory

conditions. When yeast cells are grown in a non-fermentable substrate, the mitochon-

drial volume as a proportion of cell volume (volume ratio) increases dramatically [17].

Mitochondria in glucose (fermentation) form very simple networks, with few branch-

ing points, while mitochondria in glycerol (respiration inducing) form networks that are

more branched and elaborate [48]. We investigate the connectivity at the global (whole

cell) and local (part of the cell) level in response to changes in surface density brought

about by cells growing in different carbon sources (details in section 3.1.4). We also ex-

pect to see a difference in the connectivity measures of mitochondrial networks grown

in the three different respiration inducing carbon sources (lactate, glycerol+ethanol and

81



raffinose) based on their overall oxygen consumption rate (OCR) and ΔΨ levels (Fig-

ure 3.9).

The second area we investigate is the relationship between surface density, network con-

nectivity and mitochondrial membrane potential (ΔΨ). We hypothesize that surface den-

sity should scale with ΔΨ. Since respiratory conditions induce a change in volume ratio

and surface density of mitochondria in a cell, and respiration requires ΔΨ, we expect

that there will be some sort of relationship between the surface density of mitochondria

and the overall level of ΔΨ. Furthermore, it has been suggested by observation that con-

ditions that result in highly connected networks tend to favor more fission and fusion

events [17]. Therefore we hypothesize that ΔΨ scales with mitochondrial network con-

nectivity. This is due to the selective fusion mechanism where only mitochondria that

are functional/healthy can fuse back to the network.

We also investigate specific regions of the mitochondrial network known as branching

points. These are the intersections of tubules within the network (Figure 5.1, red and

cyan dots). Branching points are by definition sites of higher connectivity compared

to non branching point regions. Therefore on average, more fusion events might take

place in these regions, and therefore by the selective fusion principle they might display

a higher ΔΨ level. Therefore we hypothesize that branching points within a network

might have a higher level of ΔΨ compared to the rest of the network.

Lastly, we investigate the ΔΨ levels of isolated fragments of mitochondria. Based on the

mitochondrial quality control model that says that isolated fragments of mitochondria

that are unable to fuse back to the network are targeted for mitophagy, we expect these

fragments to have a lower level of ΔΨ compared to the network. Furthermore because

mitophagy selection is size dependent (i.e. only fragments below a certain size can un-

dergo mitophagy) [120, 121] we expect smaller isolated fragments to have a lower ΔΨ

compared to longer isolated fragments.
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Figure 5.2: Global and local connectivity in mitochondrial networks.
Shown here is a graph representation of a real mitochondrial network. Branching points representing
the intersection of edges/tubules in the network are shown as red nodes, while the ends of the tubules
are shown as blue nodes. The largest connected component circled in red is the largest completely con-
nected entity in the graph. The measures outside the blue outline represent the global connectivity
measures of the entire network/graph (area circled in blue). Global connectivity gives an overall mea-
sure of how interconnected the network is. The measures inside the blue outline represent the local
connectivity measures of the network. Local connectivity measures shows the connectivity related to a
region of the graph, hence they are tied to a particular node in the graph, for e.g. the local connectivity
numbers shown are for the node circled in green.
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5.2 Materials and Methods

5.2.1 Data structure

The data calculated in this chapter utilizes the database structure as detailed in sec-

tion 2.2.8. It consists of structural (area, length, volume), topological (network connec-

tivity measures) and functional parameters (respiration, ΔΨ levels) organized at a per

tubule, per cell and per population (carbon source) level. This allows analysis to be

carried out at the scale appropriate to each question. For most of this chapter data is con-

sidered at the per cell level. However when we investigate branchpoint heterogeneity

we query at the per tubule level since we interrogate the regions around a branchpoint,

which consists of intersecting tubules.

In this chapter we consider each mitochondrial network of a cell to be a planar, undi-

rected graph. A planar graph is a graph that can be embedded in a plane, which means

it can be drawn within a plane such that no edges cross each other [122]. A graph (Fig-

ure 5.2) has edges (corresponding to the tubules of a mitochondrial network) and nodes

(corresponding to the ends of the individual tubules). The graphs were derived from

the VTK spatial information output of MitoGraph v2.0 using the NetworkX (https://

networkx.github.io/) module in Python. If a measure was specified as topological,

each edge was considered to have a length of one (i.e. an unweighted graph). If a mea-

sure was specified as geometric, the edges of the graph had a weight equal to the real

spatial length (in microns) of the tubule it represented.
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5.2.2 Surface density as a measure of spatial density of mitochondria

Spatial density of mitochondria is a measure of how densely a mitochondrial network

fills a given space. It can be expressed as volume ratio [24], which is the proportion of

the volume of the cell that consists of the mitochondrial network or it can be given as

the surface density. Volume ratio is appropriate when one is concerned only with the

amount of mitochondria in a cell, for example when normalizing OCR to mitochondrial

content. However in the context of this chapter where we are concerned with how the

spatial density of mitochondria on the cell surface affects the connectivity of the net-

work, surface density if more appropriate.

The surface area 𝑆 of a cell which we assume is in the shape of a prolate ellipsoid (𝑎 =

𝑏, 𝑐 > 𝑎, where 𝑎 is the minor axis and 𝑐 the major axis of the ellipsoid) is given by the

formula [123]:

𝑆 = 2ρ𝑎2 (1 + 𝑐
𝑎𝑒 arcsin(𝑒))

𝑒 = √1 − 𝑎2

𝑐2

(5.1)

We define the surface density of the mitochondrial network as:

𝑞 = 𝐿
𝑆

𝐿 = total length of mitochondrial network

𝑆 = surface area of cell

(5.2)

5.2.3 Global and local measures of connectivity

We use standard network theory terminology when defining measures of connectiv-

ity in the mitochondrial network, which we consider to be an undirected planar graph
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[122]. In this type of graph, the largest connected component is the largest subgraph

with no unconnected /isolated edges (circled red in Figure 5.2). The degree of a node is

defined as the number of edges connected to that node. For example, nodes at the ends

of a graph have a degree of one. A branchpoint in our graph is a node with a degree of

at least three. The average degree of all nodes in the network is often used as a standard

measure of network connectivity.

Global Connectivity measures are connectivity measures that relate to the whole network.

These measures include:

φ = Fraction of nodes in the largest connected component

βgeometric = Fraction of edges in largest connected component

βtopological = Fraction of total length of the largest connected component

Pk3 = Fraction of nodes that have three edges

Network average degree = 2 × number edges
number of nodes

Number of edges in the graph

(5.3)

Local Connectivity are measures that reflect the connectivity of specific regions within the

network. These measures consist of:

Nearest neighbor degree of a node is the average degree of all directly adjacent nodes.
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Betweenness centrality of node 𝑣 is given by [124]:

𝐵(𝑣) = ∑
𝑠,𝑡∈𝑉

τ(𝑠, 𝑡|𝑣)
τ(𝑠, 𝑡)

where τ(𝑠, 𝑡) is the number of shortest paths
between nodes 𝑠 and 𝑡

τ(𝑠, 𝑡|𝑣) is the number of shortest paths between 𝑠 − 𝑡
passing thru 𝑣 not including 𝑠 − 𝑡

𝑉 is the set of all nodes

(5.4)

The betweenness centrality is a measure of how ’essential’ a node is to the connectivity

of a network; a high value means a node forms a vital link between the connections of

many pairs of nodes.

Closeness centrality of a node v is given by [125]:

𝐶(𝑣) = 𝑛 − 1
𝑛−1
∑
𝑣=1

𝑑(𝑣, 𝑢)

where 𝑛 is the number of nodes

𝑑(𝑣, 𝑢) is the shortest path distance between 𝑣 and 𝑢

(5.5)

A high closeness centrality indicates that the node v has small distances to all other

nodes. The numerator is a normalization factor to account for the fact that the sum of

distances scales with the number of nodes.

Clustering coefficient of a node v is given by [126]:

𝐾(𝑣) = 2𝑇(𝑣)
𝑑𝑒𝑔(𝑣)(𝑑𝑒𝑔(𝑣) − 1)

where 𝑇 is the number of triangles through node 𝑣

𝑑𝑒𝑔(𝑣) is the degree connectivity of node 𝑣

(5.6)
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A triangle is defined as a complete graph with three nodes. The clustering coefficient is

a measure of how strong the tendency of a node is to form connections with neighboring

nodes.

5.2.4 Statistical testing between conditions

All statistical tests for significance between conditions were done as in section 4.2.5. For

the correlation coefficients shown in Tables 5.2–5.7, the Pearson product-moment corre-

lation coefficient (𝑅 value) is used. We considered the correlation to be statistically sig-

nificant if the 𝑝 value that the true correlation coefficient is zero (no correlation) was

less than 0.05. The software used to calculate the 𝑝 value (Scipy stats package, http:

//docs.scipy.org/doc/scipy/reference/stats.html#) uses a non parametric boot-

strap method to calculate the 𝑝 value. A list of tables for the statistical testing between

conditions is included in the Appendix section (Table B.1).

5.3 Results

5.3.1 Mitochondrial surface density scales with network connectivity

The first question we address in analyzing functional heterogeneity at the mitochondrial

network level is whether mitochondrial surface density and the connectivity of the net-

work are related. In Figure 5.3 we plot the network average degree against the mitochon-

drial surface density for each cell in each of the four carbon sources (representing differ-

ent respiratory conditions as described in section 3.1.4). The Pearson correlation coeffi-

cients show a significant positive correlation between mitochondrial surface density and

the average degree of the network. Mitochondrial surface density also scales with other
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Figure 5.3: Network connectivity is positively correlated with mitochondrial surface density.
Shown here is a plot of the network average degree with the mitochondrial surface density for each
cell in different carbon sources. Cells in different carbon sources have different respiration rates which
affect the surface density of mitochondria in the cell (Table 5.1). Mitochondrial networks grown in
glucose undergo glucose repression and have the lowest surface density of mitochondria while those
in non-fermentable (lactate, glycerol+ethanol) or non repressing fermentable carbon sources (raffinose)
undergo aerobic respiration and have increased mitochondrial surface density. The connectivity of
the network scales scales positively with the mitochondrial surface density because tubules in a dense
mitochondrial network have a higher probability of encountering and forming connections with other
tubules. The correlation holds true for other measures of global connectivity (Table 5.2).
R value = Pearson correlation coefficient, 𝑝 value <0.05 that the Pearson correlation score is not significantly
different from zero for all conditions.
Number of cells—Glucose=96, Glycerol+Ethanol=111, Lactate=117, Raffinose=96.
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measures of global network connectivity as shown in Table 5.2. This suggest that mito-

chondrial tubules in cells with a dense mitochondrial network have a higher probability

of forming connections with other tubules, simply by having a higher chance of encoun-

tering another tubule.

Figure 5.4: Cells in fermentation have a higher regression coefficient for network connectivity–surface
density.
Shown are the least square regression plots for the relationship between network average degree and
surface density, for cells in different carbon sources. The respiration state (fermentation (glucose) or
aerobic respiration (non-glucose)) affects the regression coefficient, γ. For a given cell surface density,
cells in fermentation display a higher network average degree.

The correlation coefficients in Table 5.2 only indicate how linear is the relationship be-

tween surface density and global connectivity. When the actual regressions were plot-

ted (Figure 5.4), we see that cells in fermentation (glucose) display a steeper regression

slope/coefficient (γ) compared to those in respiration (lactate, glycerol+ethanol, raffi-

nose). This was true as well for the other global connectivity coefficients (not shown).

We performed a statistical test on whether there was an interaction between the state of

the cell (fermentation/respiration) and their regression coefficient for network average
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degree–surface density. This is a standard way to test if two different regression coef-

ficients are the same [127]. An interaction that is close to zero indicates that the regres-

sion coefficients between two populations are equal. The interaction term (’slope Den-

sity.:fermt[T.resp]’, Table B.2) is significantly different from zero (γrespiration is -1.33 lower

than γfermentation , 𝑝 <0.01). Similar results were obtained when using different global

connectivity measures (data not shown). This means that cells in fermentation display a

higher connectivity for the same surface density compared to cells in respiration. This

could indicate that connectivity is regulated in a respiration independent manner as

cells in fermentation display network connectivity at a higher level then would be pre-

dicted by their surface density values alone (discussed in more detail in section 5.4).

The surface density does not show a strong correlation with measures of centrality or

clustering coefficient (Table 5.3). A high centrality score indicates the node is a ’hub’, i.e.

that node is at the intersection of many paths between other pairs of nodes. Our results

suggest that nodes do not become more ’central’ and the network does not become more

of a ’hub-like architecture’ as surface density increases.

5.3.2 Mitochondrial surface density does not correlate with ΔΨ or con-

nectivity

We next investigate whether ΔΨ of the network correlates with network connectivity, as

it has been observed that larger networks tend to have more fusion events [17] which re-

quires ΔΨ. Surprisingly we find that there is no correlation between the surface density

of mitochondria with the mean cellular ΔΨ (the Pearson correlation coefficient between

surface density and ΔΨ was not significantly different from zero, Figure 5.5). We also in-

vestigated whether ΔΨ correlated with network connectivity (Table 5.4 and Table 5.5)

and found no correlations that were significant. This means that a highly connected

91



node (or region of nodes) does not have a different ΔΨ level compared to any other node.

Figure 5.5: Mitochondrial membrane potential is not correlated with mitochondrial surface density.
Shown here is a plot between the mean mitochondrial membrane potential (ΔΨ) and mitochondrial
surface density for each cell in different carbon sources (see section 3.1.4 for details of the carbon
sources). The 𝑝 value is >0.05, meaning that the Pearson correlation coefficient is not significantly dif-
ferent from zero for all conditions. There was also no clear correlation between ΔΨ and connectivity
(Table 5.4 and Table 5.5). We conclude that cellular ΔΨ is independent of the surface density and con-
nectivity of mitochondria in the cell. Changes in the respiration state (glucose vs the others) did not
affect the lack of correlation between network connectivity and ΔΨ.

5.3.3 Mitochondria with similar surface densities do not show a dif-

ference in correlation with ΔΨ or connectivity measures

A possible confounding factor when comparing connectivity vs ΔΨ of populations of

cells grown in different carbon sources is that they display some variance in their sur-

92



Figure 5.6: Histogram of cell populations in respiratory conditions based on surface density.
Variation in surface density in population of cells undergoing aerobic respiration might confound the
analysis of ΔΨwith connectivity. To control for this, a subpopulation of the cells (shaded region) with
surface density in the range 0.5–0.9 was selected to allow comparisons of ΔΨ and connectivity with
similar surface densities of mitochondria. The size of the subpopulations was indicated as a propor-
tion of the total number of cells in the full population.
YPE = Glycerol+Ethanol, YPL = Lactate, YPR = Raffinose.

Figure 5.7: Mitochondrial membrane potential is not correlated with surface density for subpopulation of
cells with surface density in the range 0.5–0.9.
After taking a subpopulation of cells with similar surface densities (Figure 5.6) for the three popula-
tions undergoing respiration, we found no correlation between ΔΨ and surface density. We also did
not find significant correlations between ΔΨ and connectivity measures in the subpopulation (Ta-
ble 5.6).
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face density (Table 5.1). Since connectivity is affected by density, we have to ensure that

we are comparing cell populations grown in carbon sources with similar surface den-

sities of mitochondria in order to get a meaningful comparison. We decided to take a

subpopulation of cells with a surface density in the range of 0.5–0.9 (Figure 5.6), ensur-

ing that we had cells with a default higher amount of mitochondrial surface density.

There were no cells from the glucose population (YPD) with surface density values in

this range. As shown in (Figure 5.7) there was still no correlation between ΔΨ and mito-

chondrial surface density.

5.3.4 Branchpoint regions have similar ΔΨ to non branchpoint regions

Figure 5.8: Branchpoints do not show a difference in mean mitochondrial membrane potential (ΔΨ) com-
pared to non branchpoints.
Shown here is the distribution of mean ΔΨ for each branchpoint (blue) or non branchpoint (green)
for all mitochondrial networks in a population. To compare branchpoints ΔΨ and non branchpoints
ΔΨ, a bootstrapped sampling of voxels that were not in the branchpoints regions was used to estimate
the mean ΔΨ of non branchpoint regions. A branchpoint region was defined as a spherical region of
radius 300nm centered at a node with degree of three or higher. The sampling population was equal to
the number of branchpoints in that cell.
Total number of branchpoints—Glucose=1134, Glycerol+Ethanol=1956, Lactate=3507, Raffinose=1623.
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Since branchpoint regions are by definition sites of higher connectivity compared to

the rest of the network, we investigated whether regions of mitochondrial tubules near

a branching point (within a radius of 300 nm) had different ΔΨ levels compared to

non branchpoint regions. We did this via a bootstrap sampling approach to compare

branchpoints with equivalent samples of non branchpoints. The blue dots in Figure 5.8

show the mean ΔΨ value of all branchpoints in a particular cell. For example for glucose

where 𝑁 = 96 cells, there are 96 blue dots representing the mean ΔΨ of all branching

points in each cell.

There are of course many fewer branchpoint regions compared to non branchpoint

regions in a cell. To account for this, for each cell we sampled from the distribution of

all non branchpoint voxels (defined as not lying within 300 nm of a branchpoint) in the

mitochondrial network to construct a bootstrapped population of ’non-branchpoint’

regions. The sampling population was equal to the number of branchpoints in that

cell. The mean of all the bootstrapped ’non-branchpoint’ regions was then plotted as a

green dot for the cell, and repeated for all cells in all populations (Figure 5.8). As can

be seen from the violin plots in the figure, there was no difference in the distributions

of ΔΨ between branchpoints and non branchpoints. Statistical testing performed as in

section 4.2.5 also revealed no significant difference between the branchpoints and non

branchpoints. Thus we conclude that branchpoints did not have a different ΔΨ level

compared to non branchpoint regions.

5.3.5 ΔΨ of isolated mitochondrial fragments are no different from

the rest of the network

According to the mitochondrial quality control model, damaged mitochondria are tar-

geted for mitophagy. It is also well known that mitophagy rate is correlated with mito-
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Figure 5.9: Isolated mitochondrial fragments do not show a correlation of size with mitochondrial mem-
brane potential.
Shown here is plot of the mean ΔΨ vs length of all isolated mitochondrial tubules in each carbon
source population. The lack of correlation between fragment ΔΨ and fragment length means that mi-
tophagy selection does not depend on ΔΨ. Previous studies have shown that larger fragments are pro-
tected from mitophagy ([121]), hence if mitophagy selection was affected by ΔΨ it would be expected
that the large fragments will have a higher overall ΔΨ, based on the assumption that healthier mito-
chondria are protected from mitophagy.
Number of isolated fragments—Glucose=173, Glycerol+Ethanol=169, Lactate=305, Raffinose=148.
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chondrial length since small mitochondrial fragments are easier to be processed by the

mitophagy machinery [120, 121]. We investigated whether isolated mitochondrial frag-

ments with short lengths have a lower ΔΨ level, because we expected that on average

any isolated fragments of mitochondria that were observed in the network would be

those that have lower health/function and therefore be unable to fuse back to the net-

work. We defined an isolated mitochondria in a network as a subgraph with only one

edge. We found no correlation between ΔΨ and the length of the isolated mitochondria

(Figure 5.9). Furthermore there was no clear clustering of short mitochondrial fragments

in the low ΔΨ region, which would be observed if there was a ’threshold’ level of func-

tional fitness where short isolated mitochondria are targeted for mitophagy. In addition

when we compared the ΔΨ of isolated fragments (regardless of their length) against the

rest of the network, there was no difference in their mean ΔΨ (Figure 5.10).

5.4 Discussion

We consistently found that cells with a higher density of mitochondria also have more

connected mitochondrial networks. These results support the idea that mitochondrial

tubules in a densely occupied cell surface would have a higher chance to encounter and

fuse with another mitochondrial tubule. The three populations that undergo aerobic

respiration (glycerol+ethanol, lactate and raffinose) also do not show a difference in

their correlation of connectivity with surface density. Thus we conclude that the rela-

tionship between network connectivity and amount of mitochondria in the cell is inde-

pendent of the carbon source as long as it undergoes respiration. Mitochondrial net-

works undergoing fermentation show a lower correlation between network connectiv-

ity and surface density. We found that mitochondrial networks in fermentation have

a higher slope for the relationship between network connectivity and surface density.
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Figure 5.10: Isolated mitochondrial fragments do not show a difference in ΔΨ compared to the rest of the
mitochondrial network.
Shown here is plot of the mean ΔΨ of isolated mitochondrial tubules (green) vs the rest of the con-
nected network (blue) for each population of cells grown in different carbon sources. Isolated frag-
ments do not show a any difference in their mean ΔΨ compared to the network of connected tubules.
Number of isolated fragments—Glucose=173, Glycerol+Ethanol=169, Lactate=305, Raffinose=148.
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This means that cells in fermentation tend to form more connected networks at a given

surface density value compared to those in respiration. As cells in fermentation have

lower surface density (Table 5.1), it might be argued that this tendency for them to form

more connected networks compared to respiring cells with the equivalent surface den-

sity is to reach a certain level of connectivity regardless of mitochondrial density. How-

ever this reasoning is complicated by the fact that cells in fermentation have a statisti-

cally significant lower overall connectivity level compared to those in respiration (see

columns βgeometric , βtopological , φ, Pk3 and average degree in Table 5.1, refer to Table B.1 for

the statistical test results). Nonetheless, our results imply that network connectivity is

an essential feature of mitochondrial networks that is largely independent of respiration

state. Results from our lab (data by M.Viana) indicate that one such role is to serve as a

substrate to spread and mix mitochondrial content within the network. Simulations of

fission/fusion protein mutants show that mitochondrial content mixing occur at a far

slower rate compared to wild type cells. This is because wild type cells have network

topologies with many more connections that can provide access to content mixing com-

pared to fission/fusion mutants.

According to a model [41] of the relationship between fusion/fission rates and the over-

all connectivity of the network, the probability 𝑝 of any two mitochondrial units to be

connected are:

𝑝 = αfusion
αfission + αfusion

αfission and αfusion are the fission and fusion rates
(5.7)

Based on the model, above a critical value 𝑝𝑐 the network will be hyperfused (form a gi-

ant connected network with no tubules with free ends). As the global connectivity is

higher in respiratory conditions, this implies that mitochondrial networks in respiratory

conditions have higher fusion rate or lower fission rate. This suggests that respiration
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drives the fusion rate higher in order to increase mitochondrial surface density. An ex-

ample of how fusion rate might be controlled is seen in the regulation of OPA1 process-

ing in mammalian cells. It has been observed that OPA1 is targeted for increased prote-

olytic processing when ΔΨ is low [128]. This results in a lower overall fusion rate.

We found that ΔΨ did not correlate with either the surface density nor the connectiv-

ity of the network. This was surprising because cells with a higher respiration rate (and

therefore increased mitochondrial amount) would be expected to have a high mitochon-

drial bioenergetic state. One possible explanation is that there is no selective fusion,

hence no correlation between healthy/high ΔΨmitochondria and dense/highly con-

nected networks can be observed. However this conclusion goes against the dogma of

mitochondrial quality control and would require much more direct evidence to prove

this. Another possibility is that the selective fusion threshold is not based on ΔΨ but

some other measure of mitochondrial function such as redox state or ROS levels. This

hypothesis can be tested by adapting the pipeline described in Chapter 2 to use biomark-

ers for redox or ROS levels [50]. The other possibility is that our assumption that highly

connected regions were also the sites of higher mitochondrial fusion and fission activ-

ity is not true, at least at the global level. However there might still be localized areas of

highly connected regions in the network that have higher fusion rates. This would re-

quire dynamic data (timelapse imaging) and an automated, reliable way to track fission

and fusion sites. Work on this enhancement to MitoGraph is currently ongoing.

We also predicted that branchpoints, which are regions that have undergone fusion

would be functionally different (in terms of ΔΨ). However our result indicating that

there was no difference in ΔΨ between branchpoints and non branchpoints suggests that

there is no functional difference. However without dynamic data we cannot distinguish

which branchpoints have higher fusion activity and so cannot conclusively say that there

is no functional difference in branchpoints.
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Lastly, we found it surprising that isolated fragments of mitochondria did not exhibit

a lower level of ΔΨ. This is because the quality control model states that isolated mito-

chondria that are unable to fuse back to the network are targetted for mitophagy. Selec-

tive fusion means that these isolated fragment would on average be of lower ΔΨ. We

further constrained our analysis to small fragments since mitophagy is known to size se-

lective and still did not find a clear clustering of isolated mitochondrial fragments with

lower ΔΨ. This suggest that there is no dependence on ΔΨ for mitophagy, which has

been suggested in the literature [108]. However it is also possible that the isolated frag-

ments we see are a mixture of fragments that have just undergone fission and have yet

to fuse back. Thus we would need dynamic data to observe the mitochondrial fragments

that undergo mitophagy and compare their ΔΨ just before undergoing mitophagy to

conclusively determine whether mitophagy selects for lower ΔΨ fragments. Alterna-

tively, we can create two populations with different mitophagy rates; a wild type pop-

ulation and a population with either a mitophagy impaired mutant [43] or one with in-

creased fusion rate. In the mitophagy impaired mutant we expect the average ΔΨ to be

lower than the wild type ΔΨ as there will be more unhealthy mitochondria in the pop-

ulation that is not mitophagized. Conversely in the population with increased fusion

rates, we expect that there will be less unhealthy mitochondria in the population and

hence a higher average ΔΨ compared to the wild type population.

In conclusion, we have determined that mitochondria form more connected networks

when they are densely packed on the cell surface. However we could not find any ev-

idence that these highly connected and densely packed networks have higher ΔΨ. We

also could not find any functional difference in branchpoints or isolated mitochondrial

fragments. Therefore we conclude that we will need dynamic data in order to resolve

some of these surprising results.
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Table 5.1: ΔΨ, global connectivity, local connectivity and surface density measures of mitochondrial net-
works in cells grown in various carbon sources.
∗ 𝑝<0.05 for the null hypothesis test that YPD is not significantly different from YPE, YPL and YPR,
using rank sum test with multiple testing correction as detailed in section 4.2.5. A list of tables for the
statistical testing between conditions is included in the Appendix section (Table B.1).

Carbon source ΔΨ (a.u.) Surface Density βgeometric βtopological
YPD (Glucose) 114.200* 0.281 0.674* 0.684*
YPE (Ethanol +Glycerol) 661.700 0.586 0.785 0.781
YPL (Lactate) 443.500 0.805 0.810 0.807
YPR (Raffinose) 534.700 0.581 0.795 0.797
Carbon source Pk3 Average degree Edge numbers φ

YPD (Glucose) 0.486* 2.035* 24.700 0.618*
YPE (Ethanol +Glycerol) 0.555 2.190 34.400 0.723
YPL (Lactate) 0.576 2.247 58.200 0.751
YPR (Raffinose) 0.557 2.183 33.100 0.742

Carbon source Betweenness
centrality

Near. neigh.
degree

Closeness
centrality

Clustering
coefficient

YPD (Glucose) 0.115 2.303* 0.217 0.116
YPE (Ethanol +Glycerol) 0.122 2.515 0.209 0.105
YPL (Lactate) 0.103 2.635 0.156 0.099
YPR (Raffinose) 0.136 2.519 0.213 0.113

Table 5.2: Correlation of surface density with global connectivity.
𝑝<0.05 for all values in the table. The null hypothesis test was that the correlation coefficients were not
significantly different from 0.

Pearson correlation score of
surface density with

YPD YPE YPL YPR

Average degree 0.374 0.461 0.574 0.550
βgeometric 0.323 0.261 0.450 0.380
βtopological 0.287 0.286 0.428 0.413
Edge numbers 0.367 0.381 0.485 0.501
φ 0.329 0.330 0.476 0.455
Pk3 0.389 0.421 0.586 0.543

Table 5.3: Correlation of surface density with local connectivity.
∗ 𝑝<0.05 for the null hypothesis test that the correlation coefficients were not significantly different
from 0.

Pearson correlation score of
surface density with

YPD YPE YPL YPR

Average degree 0.374 0.461 0.574 0.550
Betweenness centrality 0.203 0.117 0.228 0.079
Closeness centrality 0.044 0.058 0.161 0.075
Clustering coefficient 0.158 0.008 −0.032 0.111
Nearest neighbor degree 0.459* 0.456* 0.504* 0.530*
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Table 5.4: Correlation of ΔΨwith global connectivity and surface density. No significant correlations
were found.

Pearson correlation score of ΔΨ
with

YPD YPE YPL YPR

Surface density 0.152 −0.232 −0.220 0.206
Average degree −0.043 −0.094 0.119 0.045
βgeometric −0.003 −0.155 0.022 0.059
βtopological 0.011 −0.115 0.045 0.061
Edge numbers 0.026 −0.110 −0.265 −0.083
φ −0.007 −0.092 0.061 0.067

Table 5.5: Correlation of ΔΨwith local connectivity. No significant correlations were found.

Pearson correlation score of ΔΨ
with

YPD YPE YPL YPR

Betweenness centrality −0.026 −0.121 0.060 0.080
Closeness centrality −0.008 0.000 0.249 0.157
Clustering coefficient 0.023 −0.163 0.247 0.052
Nearest neighbor degree 0.041 0.013 0.084 0.004

Table 5.6: Correlation of surface density with global connectivity for the subpopulation of cells with
surface density in the range 0.5–0.9.
∗ 𝑝<0.05 for the null hypothesis test that the correlation coefficients were not significantly different
from 0.

Pearson correlation score of
surface density with

YPD YPE YPL YPR

Average degree NA 0.382* 0.422* 0.442*
βgeometric NA 0.087 0.393* 0.312*
βtopological NA 0.090 0.351* 0.356*
Edge numbers NA 0.307* 0.457* 0.320*
φ NA 0.120 0.360* 0.388*
Pk3 NA 0.312* 0.442* 0.419*

Table 5.7: Correlation of surface density with local connectivity for the subpopulation of cells with sur-
face density in the range 0.5–0.9.
∗ 𝑝<0.05 for the null hypothesis test that the correlation coefficients were not significantly different
from 0.

Pearson correlation score of
surface density with

YPD YPE YPL YPR

Betweenness centrality NA −0.018 0.208* 0.057
Closeness centrality NA −0.016 0.019 0.110
Clustering coefficient NA 0.137 −0.010 0.081
Nearest neighbor degree NA 0.396* 0.400* 0.498*
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Chapter 6

Membrane potential heterogeneity at the

cellular level: mother-bud asymmetry of

mitochondrial function in budding yeast
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6.1 Introduction

Eukaryotic cells exhibit cell polarity, i.e. spatial heterogeneity in the structure and func-

tion of cellular components such as the cytoskeleton, organelles and cell surfaces. Cell

polarity results from asymmetric distribution and organization of cellular components

and function within the cell. Well known examples are the apical and basolateral plasma

membrane domains in epithelial cells and the dendrite and axon terminals seen at the

synapses of neurons. The life cycle of organisms exhibit polarity in the form of asymmet-

ric cell division. Young individuals are born with low levels of damaged proteins that is

mostly independent of the age of their parents. This is thought to be crucial to maintain

healthy germline cells at the expense of somatic cells (’disposable soma theory’, [129].

Budding yeast experience polarized cell growth at several stages during its life cycle.

For example haploid cells exposed to a pheromone from another cell of the opposite

mating type arrest cell growth in G1 and form projections towards the other cell [130].

While mating is a distinct transition in the life cycle of budding yeast, for this thesis we

are only interested in their mitotic life cycle. Budding yeast cells undergo cell prolifer-

ation where the original mother cell gives rise to a bud/daughter cell with an entirely

new cell surface. While budding yeast does not have a germline/somatic cell distinction,

they do display age related changes in cellular function and fitness. Mother cells do not

divide forever, they stop after around 20–25 divisions and then enter a short postreplica-

tive state before lysis [131]. The number of times the mother cell can divide is known

as its replicative life span. As it ages, the mother cell exhibits accumulation of oxida-

tively damaged proteins and extrachromosomal rDNA circles [39], impaired mitochon-

dria [132] and eventually loses the ability to undergo further cell division [40]. However

daughter cells are born with full replicative potential [133] and much lower levels of ox-

idative stress [39]. Oxidative damage is thought to contribute to age related decline in

mitochondrial and cellular function [132, 134].
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There is emerging evidence for the existence of a mitochondrial quality control mecha-

nism via fission and fusion to segregate healthy mitochondria and that buds preferen-

tially inherit these mitochondria during cell division [50, 135]. An early study noted a

reduced level of mitochondrial membrane potential (ΔΨ) in older populations of bud-

ding yeast cells using flow cytometry [132]. This study was done using a method that

lacks single cell resolution level, and hence cannot answer how functional asymmetry

is distributed within the cell. A study by Pon et al. [50] showed evidence of an intracel-

lular asymmetry of function in budding yeast at single cell resolution level. They quan-

tified levels of oxidative redox potential using a mitochondrial matrix targeted fluores-

cent protein marker (roGFP1) and also superoxide levels by staining with dihydroethid-

ium (DHE). They found that mother cells retained mitochondria with a lower ratio of

reduced to oxidized roGFP1 and higher superoxide levels compared to buds. They also

showed that the ratio of reduced to oxidized roGFP1 in mother and bud cells decreased

with replicative age, meaning that mitochondria in old cells were more oxidized .

What the above studies lacked was that there was no analysis of the spatial distribution

of function in mitochondrial networks along the mother-bud cell axis. This means that

previous studies did not quantify the distribution of a functional marker at specific re-

gions along this axis that might be important to the cell cycle. For example, the bud neck

is believed to be a bottleneck for movement of all cargoes into the bud [136] and it would

be interesting therefore to see if mitochondrial quality around this region could impact

bud growth. Using the methods developed in Chapter 2, we extended the analysis of

functional heterogeneity of mitochondria at the cellular level using the distribution of

ΔΨ along an axis that represents the polarity of the mother-bud cell axis. We show for

the first time how ΔΨ is distributed along this axis and provides a quantitative analysis

of how this ΔΨ distribution varies with budding progression.
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6.2 Materials and Methods

6.2.1 Picking of points to define the mother-bud axis

We used the open-source Mayavi 3D visualization software (http://code.enthought.

com/projects/mayavi/) to render in 3D the mitochondrial network skeleton based on

the outputs from MitoGraph v2.0. Mayavi has convenient function wrappers in Python

for handling VTK objects and makes it easier to write interactive software for the cell

picking procedures described below.

The cell surfaces (yellow ellipses) shown in Figure 6.1 were drawn using the Mayavi’s

Parametric Surface function. The major and minor axis length, center coordinate and

angle of the ellipse was obtained via an ImageJ ellipse fit of a hand traced ROI of the

brightfield data of the actual cell, as detailed in section 2.2.5. The surfaces shown rep-

resent the 3D rendering of that ellipse fit. Additionally, it was often necessary to center

the cell surfaces in the 𝑧−axis. This was because the focal slice position used to trace the

brightfield image was often not aligned with the 𝑧−axis midpoint of the mitochondrial

skeleton (which is based on MitoGraph v2.0’s coordinate outputs). This would often re-

sult in the skeleton ’jutting out’ in the 𝑧−axis from the cell surface (Figure 6.2A). Center-

ing was done via another mouse callback function by iteratively picking a position in the

skeleton (magenta dot in the figure) that resulted in full enclosure of the skeleton by the

cell surface.

To define the mother-bud axis, we picked three points; the base, tip and neck points on

the cell surfaces via a mouse callback function (a function invoked when a mouse but-

ton was pressed). The base and tip represent the ends of the cell surfaces on the mother

side and the bud side respectively. For the picking of the neck point, the intersection

between mother and bud was estimated by taking the mid point of the intersection be-
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tween the mother and bud surfaces (Figure 6.2B). Care was also taken to pick the ex-

treme ends of the cell surface and not the skeleton (Figure 6.2C, blue and green dots).

This was important because the mitochondrial skeleton was not always fully distributed

at the ends of the cell surface, especially in cells with low amount density of mitochon-

dria. Picking the points on the surface allows us to obtain correct correct localization of

the mother-bud axis.

6.2.2 Direction cosine based transformation matrix to realign the

mother-bud cellular axis

In order to analyze mother-bud functional asymmetry, it is necessary to define a coordi-

nate system that conveniently aligns with the mother-bud cell axis. The direction cosine

matrix is a matrix containing the cosines of the angle between a vector and its basis. It is

used to express a vector in one orthogonal basis to a different basis [137]. It can be used

to transform the coordinates of all points in the mitochondrial skeleton so that for exam-

ple, the mother-bud axis aligns parallel with the 𝑥−axis unit vector (1i + 0j + 0k). The

transformation matrix T is given by:

Xglobal = TXlocal

Xglobal = vector coordinates expressed with basis i, j,k
of the Cartesian coordinate system

Xlocal = vector coordinates expressed with basis x,y, z
of the Cartesian coordinate system

(6.1)

Suppose we want to transform the coordinates of all the points in the skeleton in Fig-

ure 6.1 (’Local coordinate’). To define the mother-bud axis we pick two points repre-

sented by the blue and green dots. The blue and green dots represent the base and tip re-

spectively of the mother-bud cell periphery. The mother-bud axis will be the main axis,
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Figure 6.1: Global and local coordinate system.
Shown in this figure is a mitochondrial network and cell that will be transformed from its original ori-
entation in the ’Local Coordinate’ to the ’Global Coordinate’ system based on the Cartesian coordi-
nate system with origin at (0, 0, 0). The yellow ellipse surfaces represent the cortical periphery of the
cell, with a mother (larger ellipse) and bud (smaller ellipse). The large arrow (Xarrow) represents the
mother-bud cell axis. A mouse callback routine written in Mayavi/Python was used to transform the
cell by picking three points (blue,red and green). The blue and green points define the orientation of
Xarrow. In order to constrain the rotation plane, a third point was needed and is represented by the
red point. The location of the red point was chosen as the intersection between the mother and bud
cell surfaces. The red arrow represents a position vector for this intersection (called the bud neck) and
is coplanar with the 𝑥 − 𝑦 plane of the local coordinate system. The transformation matrix translates
and rotates the entire skeleton/cell so that the local 𝑥 − 𝑦 plane lies on the global 𝑥 − 𝑦 plane. The trans-
lation is based on the location of the blue point (Xbase) so that after transformation the blue point lies
on the origin (0, 0, 0) of the global coordinate system.
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(A) An example of a skeleton that is not aligned with the cell surface (represented by the yellow ellipse,
with the ellipse center shown in cyan). The cell surface was based on an ellipse fit of a hand traced out-
line of the inflection point in the 𝑧−position of the original brightfield image. The inflection point is
the frame with the least visible outline of the cells in the brightfield image stack. A mouse callback
function was used to pick the magenta point which repositions the cell surface so that it had good
alignment with the skeleton.

(B) The bud neck region was picked based on the intersection of the two cell surfaces and is represented
by the red cross. The bud neck coordinate is used to partition the cell into a mother and bud region.

(C) Care was always taken to pick the boundary of the cell based on the cortical periphery of the cell sur-
face and not the skeleton. In this case the blue and green points were chosen to represent the base
(blue) and tip (green) of the mother-bud cell axis.

Figure 6.2: Caveats when picking transformation points.
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and for convenience we define it as the 𝑥−axis of the local coordinate system. We need

to pick another point to fix the plane of rotation, which we define as the plane formed by

the blue (base), green (tip) and red (neck) dots and call this plane the 𝑥 − 𝑦 plane in the

local coordinate system. Therefore the three dots can be expressed as position vectors in

the Cartesian coordinate system:

Xbase = 𝑋𝑏𝑎𝑠𝑒i + 𝑌𝑏𝑎𝑠𝑒j + 𝑍𝑏𝑎𝑠𝑒k

Xtip = 𝑋𝑡𝑖𝑝i + 𝑌𝑡𝑖𝑝j + 𝑍𝑡𝑖𝑝k

Xneck = 𝑋𝑛𝑒𝑐𝑘i + 𝑌𝑛𝑒𝑐𝑘j + 𝑍𝑛𝑒𝑐𝑘k

(6.2)

Consider a vectorXarrow represented by the large, white arrow in Figure 6.1 (’Local coor-

dinate’) which represents the mother-bud axis. In the local coordinate system it has unit

vectors xbase,ybase, zbase:

T =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥1 𝑥2 𝑥3 𝑋𝑏𝑎𝑠𝑒

𝑦1 𝑦2 𝑦3 𝑌𝑏𝑎𝑠𝑒

𝑧1 𝑧2 𝑧3 𝑍𝑏𝑎𝑠𝑒

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝑥1, 𝑦1, 𝑧1 are the direction cosines of the x-axis in the local coord. system
𝑥2, 𝑦2, 𝑧2 are the direction cosines of the y-axis in the local coord. system
𝑥3, 𝑦3, 𝑧3 are the direction cosines of the z-axis in the local coord. system

(6.3)

The matrix formed by the direction cosines in (6.3) is the rotation matrix to rotate from

the Cartesian to the local coordinate system, and the last column vector represents a

translation from the origin (0, 0, 0) to the position atXbase. The (𝑥1, 𝑦1, 𝑧1) direction

cosines of the vectorXarrow, which has unit vector xbase is:

𝑥1 =
𝑋𝑡𝑖𝑝 − 𝑋𝑏𝑎𝑠𝑒

|𝑋𝑎𝑟𝑟𝑜𝑤| 𝑥2 =
𝑌𝑡𝑖𝑝 − 𝑌𝑏𝑎𝑠𝑒

|𝑋𝑎𝑟𝑟𝑜𝑤| 𝑥3 =
𝑍𝑡𝑖𝑝 − 𝑍𝑏𝑎𝑠𝑒

|𝑋𝑎𝑟𝑟𝑜𝑤| (6.4)
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The direction cosines (𝑡1, 𝑡2, 𝑡3) forXminor can be found in the same manner as in equa-

tion (6.4) by replacingXtip withXneck. Now, because the vectorsXarrow andXminor (red

arrow in Figure 6.1) formed by the three coplanar pointsXbase,Xneck andXtip lie on the

𝑥 − 𝑦 plane of the local coordinate system, the unit vector zbase is orthogonal to this 𝑥 − 𝑦

plane (i.e. the dot product of the vectors is zero):

zbase ⋅ Xarrow = 𝑥3𝑥1 + 𝑦3𝑦1 + 𝑧3𝑧1 = 0

zbase ⋅ Xminor = 𝑥3𝑡1 + 𝑥3𝑡2 + 𝑧3𝑡3 = 0 (6.5)

Expressing 𝑥3 and 𝑦3 in terms of 𝑧3 and using the unit vector definition of Zbase we ob-

tain the (𝑥3, 𝑦3, 𝑧3) components of the unit vector zbase:

zbase = 𝑥3i + 𝑦3j + 𝑧3k

√𝑥2
3 + 𝑦3

3 + 𝑧2
3

zbase = 𝑥3
𝐷 i + 𝑦3

𝐷 j + 𝑧3
𝐷k

where D = √( 𝑡3
𝑡1 + 𝑡2

)
2

+ (𝑡3𝑥1 − 𝑡1𝑧1 − 𝑡2𝑧1
𝑡1𝑦1 + 𝑡2𝑦2

)
2

+ 1

(6.6)

Then obtaining the (𝑥2, 𝑦2, 𝑧2) components of the unit vector ybase is done by taking the

cross product of the other two orthogonal unit vectors:

ybase = zbase × xbase (6.7)

The transformation matrix to transform the cell so that the mother-bud axis is parallel to

the Cartesian x-axis is just the inverse of T. The inverse of the rotation matrix is its trans-

pose. Therefore to align the arrow vector (which in our case, is the mother-bud axis) to
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be parallel to the unit vector (1i + 0j + 0k) the transformation matrix is:

T−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥1 𝑦1 𝑧1 −𝑋𝑏𝑎𝑠𝑒

𝑥2 𝑦2 𝑧2 −𝑌𝑏𝑎𝑠𝑒

𝑥3 𝑦3 𝑧3 −𝑍𝑏𝑎𝑠𝑒

0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.8)

We used the math functions in VTK to obtain the cross product and set the transforma-

tion matrix T−1 as a filter to be applied to the original skeleton. This results in a skeleton

transformed and aligned as shown in Figure 6.1 (’Global coordinate’).

The source code for transforming the cell is included in Appendix D.3.

6.2.3 Tracking functional heterogeneity during budding progression

Once the skeleton was transformed so that the mother-bud axis was aligned with global

Cartesian 𝑥−axis, we partitioned the cell into a ’mother’ and ’bud’ region by comparing

the 𝑥−coordinates of all points in the skeleton to the ’neck’ point. Points lower than the

neck point value were classified as belonging to the mother region while those greater

were classified as a bud region. We tracked budding progression using the volume of

the bud. Buds have relatively stable mitochondrial content and cell size, in contrast to

their mothers that grow larger and show reduced mitochondrial volume ratio as they

age [24]. We defined the bud to have completed cell division when it reached a volume

that was equal to the largest 10% of buds.
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6.3 Results

6.3.1 Buds have mitochondria with higher ΔΨ compared to mother

cells

Previous studies have shown that mother cells accumulate more damaged cellular com-

ponents such as oxidized proteins and impaired mitochondria [39, 40, 132]. We find

similar results in our dataset of budding yeasts grown in various carbon sources repre-

senting different respiratory conditions (see section 3.1.4 for details). Since we are com-

paring intracellular ΔΨ heterogeneity when comparing mother and buds, we scaled the

ΔΨ values of each cell so that its min and max values correspond to 0 and 1 respectively.

In all conditions buds have a statistically higher average ΔΨ compared to their mothers

(Figure 6.3, statistical testing done as in section 4.2.5 with the test function modified to a

Wilcoxon signed rank test for paired samples).

We also expressed the heterogeneity of mother-bud ΔΨ as a ratio between the mean ΔΨ

of the bud to the mean ΔΨ of the mother for each cell. A ratio greater than one means

the bud has an average ΔΨ greater than the mother. The distributions of this ratio across

the different respiratory conditions are shown in Figure 6.4. On average buds have a me-

dian ΔΨ that was 20% greater than the mother. There was no statistical difference in the

mean ΔΨ bud/ΔΨmother ratio across all groups except for glycerol+ethanol (statistical

testing done as in section 4.2.5), indicating that buds had a higher ΔΨ than their mothers.

However not all cells had buds with ΔΨ larger than their mothers; on average 65% of

cells had buds with a larger ΔΨ compared to their mothers. The mother-bud ΔΨ asym-

metry was smallest in the glycerol+ethanol population, both in their magnitude and pro-

portion of cells.
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Figure 6.3: Buds have higher mitochondrial membrane potential (ΔΨ) compared to their mothers.
Shown in this figure is the distribution of the scaled ΔΨ distribution of all buds and mothers grown in
different carbon sources. The scaled ΔΨ represents the mean ΔΨ value of a particular bud or mother
scaled to the min and max ΔΨ value for that cell. Buds have a statistically significant higher ΔΨ com-
pared to their mothers for all conditions (𝑝<0.05 based on Wilcoxon signed rank test for paired sam-
ples, with post-hoc multiple testing correction).
White bars indicate the median values for the scaled ∏Ϊ .
Number of mother-bud pairs—Glucose=56, Glycerol+Ethanol=54, Lactate=58, Raffinose=46

Figure 6.4: Distribution of ΔΨbud/ΔΨmother in different carbon sources.
The ratio of ΔΨbud/ΔΨmother was used to quantify the number of cells where the average ΔΨ of the
bud was higher than the mother as well as the average magnitude of this ratio. The first row of num-
bers represent the average magnitude of ΔΨbud/ΔΨmother. The mean of this magnitude was about
1.2 (20% higher ΔΨ in the bud). The second row of numbers represent the proportion of mother-bud
pairs where the bud had a higher ΔΨ compared to the mother. The last row of numbers represent the
number of mother-bud pairs for each population.
White bars indicate the median values for the ratio of ΔΨbud/ΔΨmother.
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6.3.2 Mitochondria display different gradients of ΔΨ along the

mother-bud axis

To analyze the distribution of ΔΨ along the mother-bud cell axis, we partitioned cells

into a mother and bud region and defined two separate coordinate systems (one for the

mother and one for the bud, each scaled 0–1). The intersection point (bud neck) had a

value of 1 for the mother and 0 for the bud in their respective coordinate systems. The

corresponding plot for the mother regions for each carbon source is shown in Figure 6.5.

For the bud regions, we further partitioned the plots according to bud volumes, as these

represented different stages of bud growth. The partition bins are labeled as ’binvol’ in

Figure 6.6, representing bud volume in µm3). The ΔΨ values in these plots were scaled

to the min and max of the entire cell axis (mother and bud) for each cell. We observe

a pattern where ΔΨ was lowest at the mother distal end, gradually rises and plateaus

halfway in the mother cell for the populations of glycerol+ethanol, lactate and raffinose

(Figure 6.5). For glucose, ΔΨ does not seem to plateau but appears to continue to rise,

although the error bars are large enough that a plateau cannot be ruled out.

It was harder to discern a clear pattern for the progression of ΔΨ in buds (Figure 6.6).

Due to partitioning the buds into different bud volumes, the sample numbers were re-

duced for each bud volume category and hence the error bars were larger compared to

the mother plots. It appears that larger buds have a more consistent/flat ΔΨ distribution

compared to smaller buds, except for the case of raffinose. Consistent with the results

from Section 6.3.1, the bud region displays a higher average ΔΨ compared to the mother

regions. There appears to be a discontinuity (i.e. a sudden rise in ΔΨ) at the bud neck

region when moving from the mother to the bud.
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Figure 6.5: Spatial distribution of ΔΨ along the mother cell axis.
Shown in this figures is a plot of the average ΔΨ at each position along the mother axis (position 0 is at
the mother distal end away from the bud neck, position 1 is at the bud neck). ΔΨ gradually increases
from the mother distal end and plateaus halfway along the axis.
Error bars represent the 95% confidence interval of the median ∏Ϊ at each position along the mother cell axis.
Number of cells—Glucose=56, Glycerol+Ethanol=54, Lactate=58, Raffinose=46

6.3.3 Mitochondrial ΔΨ asymmetry is maintained during the budding

progression

We tracked the ratio of bud ΔΨ to mother ΔΨ as a function of budding progression (de-

fined in Section 6.2.3) to see if there was a change in the functional asymmetry of ΔΨ

as budding progressed. As shown in Figure 6.7, with the exception of glycerol+ethanol

this ratio is maintained above 1 throughout budding progression. This indicates that

mitochondrial bud quality is maintained at a higher level throughout the cell cycle. Glyc-

erol+ethanol grown cells display a reduction in this ratio to values below 1 at intermedi-

ate values of bud volume. We found that while glycerol+ethanol had the lowest bud ΔΨ

to mother ΔΨ ratio, for most of the budding progression it was above 1. We also parti-

tioned the the data in Figure 6.7 according to bud volumes, similar to what was done for

the bud ΔΨ gradient in Figure 6.6. As shown in Figure 6.8, there does not appear to be

an obvious change in the ΔΨ asymmetry between cells with smaller and larger buds.
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Figure 6.6: Spatial distribution of ΔΨ along the bud cell axis.
Shown in this figures is a plot of the average ΔΨ at each position along the bud axis (position 0 is at the
the bud neck, position 1 is at bud end opposite the bud neck). The buds are partitioned according to
their volume. The partitioning bins are labeled as ’binvol’, representing bud volume in µm3). Larger
buds display a more consistent/flat ΔΨ distribution compared to smaller buds, except for the case of
raffinose.
Error bars represent the 95% confidence interval of the median ∏Ϊ at each position along the bud cell axis.
Number of cells—Glucose=56, Glycerol+Ethanol=54, Lactate=58, Raffinose=46
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Figure 6.7: Mitochondrial ΔΨ asymmetry is maintained throughout the cell cycle.
The ΔΨbud/ΔΨmother ratio for each cell was plotted as a function of budding progression. There was
no significant difference in this ratio as we moved from early in the cell cycle to completion of cell divi-
sion. This indicates that the mitochondrial ΔΨ asymmetry is maintained throughout the cell cycle.
Error bars represent the 95% confidence interval of the median ∏Ϊ bud/∏Ϊ mother ratio at each value for budding
progression.
Number of cells—Glucose=56, Glycerol+Ethanol=54, Lactate=58, Raffinose=46

119



Figure 6.8: Bud size has no effect on mitochondrial ΔΨ asymmetry in the cell.
ΔΨbud/ΔΨmother ratio as a function of budding progression was plotted at different partitions of bud
volumes. The partitioning bins are labeled as ’binvol’, representing bud volume in µm3). There was no
significant difference in ΔΨ asymmetry between cells with smaller and larger buds.
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6.4 Discussion

We have analyzed and confirmed that mitochondrial networks in yeast display an asym-

metry of mitochondrial quality between mother and daughter cells (buds), similar to

previously reported results. Our results were obtained after careful segmentation of

the mother-bud axis in three dimensions as detailed in this chapter. We found that this

asymmetry exists regardless of whether the cell was undergoing fermentation or aerobic

respiration. This suggests that yeast preserve the machinery to preferentially distribute

higher quality mitochondria to their buds even when respiration demand of the cell

is low. This suggests that the distribution of mitochondria with higher levels of ΔΨ to

the progeny (bud) is inherently essential not just for aerobic respiration but perhaps for

other functions that are ΔΨ dependent, such as mitochondrial fusion and mitochondrial

protein import [138]. Our results also suggest that ΔΨ asymmetry persists throughout

the entire budding progression cycle. This suggest that ΔΨ asymmetry results from a

segregation mechanism that is active throughout the cell division cycle.

Our results showing a gradient of ΔΨ in the mother cell that plateaus halfway towards

the bud is interesting as it suggests a possible mitochondrial quality segregation process

occuring at the distal end of the mother cell. We speculate that the mechanism for this

segregation process involves some sort of preferential retention of lower quality mito-

chondria at the distal end of the mother cell. Mitochondria are tethered at the mother

end by a mitochondrial-ER-cortex-anchor (MECA) complex [139]). This complex is ab-

sent from small buds and is localized to larger buds and mother cells. At least two pro-

teins, Num1 and Mdm36 are essential components of this tethering complex. Thus one

way to test our hypothesis on segregation of mitochondria at the mother distal end is to

disrupt the expression of NUM1 or MDM36 to see if the ΔΨ gradient in the mother is

altered or even abolished.
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Our result showing a discontinuity and sudden increase in ΔΨ at the bud neck suggest

another ’hurdle’ or quality threshold that mitochondria must overcome to enter the bud.

Another possibility is that the anchorage machinery at the bud tip preferentially binds

to higher quality mitochondria. The Myo2 myosin has been implicated in transporting

mitochondria across the bud neck [140]. In addition, Mmr1 and Ypt11 are proteins that

have been identified as having a role in binding mitochondria to Myo2. Recent studies

indicate that mitochondria are tethered to the bud tip via interactions with the cortical

ER (cER). Anchorage of mitochondria to cER has been shown to be dependent on Mmr1

[141]. Thus one way to investigate the mechanism of mitochondrial quality selection

at the bud is to disrupt or modulate the expression of MYO2, MMR1 and YPT11 with

a β-estradiol gene induction and protein degradation system [142]. While there have

been studies of functional asymmetry in mmr1Δ (for example in [50]), these have only

focused on the differences in magnitude of ΔΨ asymmetry between mother and bud.

Our method allows us to study how the spatial distribution of asymmetry and the dis-

continuity of ΔΨ at the bud neck is affected by deletion or modulation of MYO2, MMR1

and YPT11. Such an analysis provides a possible mechanistic insight into how the mito-

chondrial inheritance machinery plays a role in mitochondrial quality selection during

cell division.

Interestingly we found that the magnitude of ΔΨ asymmetry between mother and bud

was smallest in the glycerol+ethanol cells (Figure 6.4). We showed in Chapter 3 that cells

grown in glycerol+ethanol had the highest average ΔΨ. Perhaps this indicates that that

there is a limit to the ΔΨ level that buds can inherit. Since glycerol+ethanol population

has the highest overall ΔΨ compared to the other populations, a bud inheriting mito-

chondria with similar ΔΨ asymmetry levels as the other populations would have exces-

sively high ΔΨ.
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In conclusion, we have shown that the distribution of ΔΨ along the mother-bud axis dis-

plays some interesting features which put quantitative restrictions on any future math-

ematical models of how mitochondrial functional asymmetry is achieved. Our findings

also suggests that the mitochondrial quality selection process involves the mitochondrial

transport and tethering machinery.
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Chapter 7

Significance and future direction

7.1 Significance

We have developed a quantitative, multiscale data analysis framework that is able to pro-

vide an integrated overview of the relationship between mitochondrial network struc-

ture and its bioenergetic state. We showed that by applying our framework onto popu-

lations of cells with different respiration states, we were able to provide insight into the

changes in their mitochondrial ultrastructure, network structure and functional asymme-

try during cell division.

Our first contribution to the field is providing the basic tools and formalizing an ap-

proach to perform structure-function relationship of yeast mitochondrial networks in

an integrated, quantitative manner. The data that we obtained could offer another con-

tribution by providing the parameters and constraining the solution space for a compu-

tational model of mitochondrial quality control through fission and fusion events. The

present computational models of how mitochondrial dynamics regulate mitochondrial

quality do not integrate detailed spatial and topological information of the network and
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how function is related to these spatial features [143, 144]. This is provided for in our

dataset at multiple size scales. The weakness in our dataset is a lack of sufficient tempo-

ral resolution such that we were unable to incorporate fission and fusion rates into our

pipeline.

Here we discuss several directions for future research that we believe can extend the util-

ity of the tools developed and provide further insight into the biology of the mitochon-

drial network.

7.2 Improved spatial resolution

The spinning disk confocal microscope platform that we use provides the best balance

between spatial and temporal resolution with minimal phototoxicity. It allows us to ob-

tain a multiscale understanding of structure and function relationship in yeast mitochon-

drial networks. However if we are only interested in for example, the ultrastructure level

we could use different imaging methods such as superresolution microscopy, deconvo-

lution or electron microscopy.

While MitoGraph v2.0 is currently very consistent (96.7% reproducibility [53]), its accu-

racy tends to suffer especially in regions where the mitochondrial network is very dense.

These dense regions are precisely the regions of most interest to our network connectiv-

ity analysis, as they have much more entropy (information content) in their topology.

Superresolution and deconvolution microscopy could potentially resolve these difficult

regions for MitoGraph to work well. The main barriers to superresolution, apart from

cost and access, is the tradeoff between spatial and temporal resolution. Superresolution

techniques tend to be very slow as they must sample the image many times to obtain

sub-pixel localization (STORM [145] and PALM [146]) or multiplex multiple frequency
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bands (structured illumination [147]). However this problem might be overcome if imag-

ing rates are improved substantially [148, 149] along with the use of improved bright

fluorescent proteins that have sufficiently high signal so that faster acquisition speeds

can be used. Deconvolution of the images obtained from the spinning disk could poten-

tially increase the resolution as well, however it would require a careful calibration of

the point spread function of the system and subsequent validation of the deconvolved

images before we can be confident in the data analysis.

In fact superresolution would be useful not just in increasing the accuracy of the skele-

tonization by MitoGraph v2.0, but would also allow direct observations of the cristae

structure that we probed indirectly in Chapter 4. Preliminary images have already

shown that live cell imaging of cristae stained with a mitochondrial membrane dye

(Mitotracker) is possible (http://www.nikon.com/products/instruments/lineup/

bioscience/s-resolution/nsim/), however at present this system requires a sampling

level that results in phototoxicity to the mitochondria.

Another way to obtain improved spatial resolution is to used electron microscopy (EM)

to directly image the ultrastructure. In Chapter 4 we mentioned that line scan analy-

sis of the data from several studies using EM have confirmed that tubule thickness in-

creases when mitochondria are undergoing respiration. However, with the exception of

very old studies from the 60’s, these EM imaging studies were not directly focused on

changes to mitochondrial cross sectional width and the distribution of tubule thickness

under different respiratory conditions. Hence it could be an interesting research topic to

use EM to study changes to the morphology and size of the mitochondrial ultrastructure

in yeast when their respiratory state is perturbed using different carbon sources. How-

ever this kind of study suffers from low throughput and requires a steep learning curve,

therefore a collaboration with a group that specializes in EM or even EM tomography

would be ideal.
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7.3 Genetically encoded functional sensors

The mapping of function onto mitochondrial networks can be greatly improved with a

fluorescent protein marker for mitochondrial membrane potential (ΔΨ). The expression

of a fluorescent protein marker for ΔΨ would in theory have much less variability (espe-

cially if it was integrated into the genome) compared to cell to cell uptake variability of

a dye. This would allow an absolute value of ΔΨ to be used based on the Nernst equa-

tion, thus enabling one to make direct comparisons of ΔΨ between cells growing in the

same carbon source. However at present the current generation of fluorescent proteins

that are voltage sensitive suffer from two huge barriers [150–152]—they are very difficult

to target and be expressed correctly on the inner mitochondrial membrane, and perhaps

even more important their fluorescent signal is so low and requires so much laser excita-

tion power that the mitochondrial network is degraded beyond the point of observation

due to photodamage.

However, it is worth mentioning that our pipeline can be adapted to any functional sen-

sor that can be targeted specifically to mitochondrial function. For example we could

use a genetically encoded redox sensor (roGFP), a hydrogen peroxide sensor (HyPer) or

superoxide sensor (mt-cpYFP), an ATP sensor (Ateam) or ADP/ATP ratio sensor (Perce-

val) and so on (references and reviews in [153]). The challenge of these sensors are again

the same as in the membrane voltage sensor, namely signal to noise ratio and correct lo-

calization to the mitochondria. However with so many options it is likely that at least

one of them can be successfully adapted to serve as a genetically encoded marker for mi-

tochondrial functional state.
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7.4 Refinement in experimental setup

In Chapter 3 we mentioned that we only measured basal respiration rates due to the dif-

ficulty of using a Clark electrode to measure oxygen consumption rates in live yeast cells.

The use of a Seahorse XF analyzer would enable us to determine the respiratory con-

trol ratios and spare respiratory capacity of mitochondria from cells in different carbon

sources. This would then confirm or disprove our theory that mitochondria in lactate

and raffinose are respiring less efficiently that in glycerol+ethanol.

The results from Chapter 5 indicate that there is no relationship between mitochondrial

function (ΔΨ) and connectivity within specific regions of the mitochondrial network.

However one of our assumptions was that highly connected regions were also the sites

of higher mitochondrial fusion and fission activity. While our results indicate that this

is not true at the global level, it might still be true within localized areas of the network.

This would require dynamic data (i.e. time courses where we can observe sites of fission

and fusion) to distinguish areas of the network with high fusion activity. Only with this

data can we conclusively say whether there is a correlation between the rate of mitochon-

drial dynamics and function/ ΔΨ. The difficulty in obtaining dynamic data is that it is

very difficult to segment automatically mitochondrial fission and fusion sites, although

work is ongoing to enable this functionality in MitoGraph. We also observed no func-

tional dependence of mitophagy with ΔΨ in isolated mitochondrial fragments, but with-

out following isolated fragments of mitochondria in real time and determining which

ones are targeted for autophagy, we cannot conclusively say that mitophagy has no func-

tional selection criteria. Furthermore we would also need to label the vacuoles or some

other part of the autophagic machinery in order to have a reliable marker for mitophagy

events.
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In Chapter 6 we present some interesting findings regarding the distribution of ΔΨ

along the mother daughter axis. Our preliminary results indicate that ΔΨ increases and

then plateaus halfway along the mother cell axis. In addition buds maintain a higher

level of ΔΨ throughout the entire cycle. Our data provides some constraints on any

future mathematical models of how mitochondrial functional asymmetry is achieved.

Our findings also suggests that the mitochondrial quality selection process involves the

mitochondrial transport and tethering machinery. By applying our pipeline on deletion

mutants for transport and tethering proteins, we could potentially gain some mechanis-

tic insight into the relationship between the mitochondrial inheritance machinery and

quality selection during cell division.
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Appendix A

Supplementary figures

Figure A.1: Shown in this figure are images of cells stained with 100nm of DiOC6, a membrane potential
dependent dye (ΔΨ). The image on the left is a cell that is undergoing respiration and has normal lev-
els of ΔΨ. The image on the right is a cell that has been treated with an uncoupler of ΔΨ, FCCP. The
ΔΨ of the mitochondria is almost completely abolished after treatment, indicating that the dye was not
suffering from auto-quenching (i.e. DiOC6 signal intensity was proportional to ΔΨ).

Image provided courtesy of V.Jayashankar.
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Figure A.2: Shown in this figure are the growth curves for 2 replicates of yeast undergoing exponential
growth in either YP+2% glycerol+2% ethanol or YP+2% lactate. The doubling times for lactate was just
slightly longer than glycerol+ethanol (3.2 hours vs 2.9 hours).
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Figure A.3: Shown in this figure are streak plates of W303a strain used in this thesis together with
a s288c strain to check for growth viability on melibiose and raffinose. The plates were yeast ex-
tract+peptone+either 2% melibiose or 2% raffinose. Imaging of the plates was taken 4 days after streak-
ing.
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Appendix B

Statistical tables
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Table B.1: Tables of statistical tests using rank-sums test with Holms -Sidak post-hoc multiple testing
correction.
Labels—YPD = glucose, YPE = glycerol+ethanol, YPL = lactate, YPR = raffinose
stat = rank sum statistic
p-val = uncorrected rank sum 𝑝 value
pval-corr. = Holms-Sidak multiple testing correction 𝑝 value
Test criteria— reject null hypothesis that there is no difference between the medians of the group if
pval-corr < 0.05
Values with 0.0000 indicate 𝑝 < 1×10−27

Cell mito avg. ΔΨ scl.
group1 group2 stat p-val p-val corr. reject

YPD YPE 5052 0.2607 0.5661 False
YPD YPL 4605 0.0120 0.0619 False
YPD YPR 4579 0.4705 0.5661 False
YPE YPL 5592 0.0352 0.1334 False
YPE YPR 5028 0.2429 0.5661 False
YPL YPR 4584 0.0106 0.0619 False

Cell mito avg. ΔΨ raw
group1 group2 stat p-val p-val corr. reject

YPD YPE 629 0.0000 0.0000 True
YPD YPL 1402 0.0000 0.0000 True
YPD YPR 939 0.0000 0.0000 True
YPE YPL 4198 0.0000 0.0000 True
YPE YPR 4085 0.0019 0.0038 True
YPL YPR 4985 0.0795 0.0795 False

Cell mito std. ΔΨ scl.
group1 group2 stat p-val p-val corr. reject

YPD YPE 5050 0.2592 0.6337 False
YPD YPL 5273 0.2221 0.6337 False
YPD YPR 4368 0.2669 0.6337 False
YPE YPL 5697 0.0549 0.2874 False
YPE YPR 4728 0.0815 0.3463 False
YPL YPR 5606 0.4915 0.6337 False

Cell mito std. ΔΨ raw
group1 group2 stat p-val p-val corr. reject

YPD YPE 1060 0.0000 0.0000 True
YPD YPL 2201 0.0000 0.0000 True
YPD YPR 1398 0.0000 0.0000 True
YPE YPL 4205 0.0000 0.0000 True
YPE YPR 4219 0.0050 0.0099 True
YPL YPR 4860 0.0457 0.0457 True

147



Network avg. deg.
group1 group2 stat p-val p-val corr. reject

YPD YPE 3685 0.0001 0.0003 True
YPD YPL 3331 0.0000 0.0000 True
YPD YPR 3280 0.0003 0.0011 True
YPE YPL 5792 0.0794 0.2198 False
YPE YPR 5281 0.4564 0.4564 False
YPL YPR 4999 0.0842 0.2198 False

Shortest path len.
group1 group2 stat p-val p-val corr. reject

YPD YPE 3292 0.0000 0.0000 True
YPD YPL 809 0.0000 0.0000 True
YPD YPR 2716 0.0000 0.0000 True
YPE YPL 2256 0.0000 0.0000 True
YPE YPR 5138 0.3296 0.3296 False
YPL YPR 2141 0.0000 0.0000 True

Number of edges
group1 group2 stat p-val p-val corr. reject

YPD YPE 2996 0.0000 0.0000 True
YPD YPL 524 0.0000 0.0000 True
YPD YPR 2805 0.0000 0.0000 True
YPE YPL 1933 0.0000 0.0000 True
YPE YPR 5142 0.3329 0.3329 False
YPL YPR 1461 0.0000 0.0000 True

Cell βgeometric

group1 group2 stat p-val p-val corr. reject

YPD YPE 3883 0.0004 0.0015 True
YPD YPL 3696 0.0000 0.0001 True
YPD YPR 3121 0.0001 0.0003 True
YPE YPL 6187 0.2690 0.5672 False
YPE YPR 5029 0.2436 0.5672 False
YPL YPR 5586 0.4733 0.5672 False

Cell βtopological

group1 group2 stat p-val p-val corr. reject

YPD YPE 3982 0.0009 0.0034 True
YPD YPL 3793 0.0000 0.0001 True
YPD YPR 3181 0.0001 0.0005 True
YPE YPL 6031 0.1762 0.4408 False
YPE YPR 5031 0.2444 0.4408 False
YPL YPR 5515 0.4111 0.4408 False

148



Cell φ
group1 group2 stat p-val p-val corr. reject

YPD YPE 3929 0.0006 0.0022 True
YPD YPL 3786 0.0000 0.0001 True
YPD YPR 3113 0.0001 0.0003 True
YPE YPL 6029 0.1751 0.4387 False
YPE YPR 5001 0.2229 0.4387 False
YPL YPR 5525 0.4193 0.4387 False

Cell Pk3

group1 group2 stat p-val p-val corr. reject

YPD YPE 3759 0.0001 0.0007 True
YPD YPL 3476 0.0000 0.0000 True
YPD YPR 3222 0.0002 0.0007 True
YPE YPL 5816 0.0868 0.2384 False
YPE YPR 5169 0.3557 0.4005 False
YPL YPR 5279 0.2257 0.4005 False

Total network length
group1 group2 stat p-val p-val corr. reject

YPD YPE 2221 0.0000 0.0000 True
YPD YPL 321 0.0000 0.0000 True
YPD YPR 2234 0.0000 0.0000 True
YPE YPL 2204 0.0000 0.0000 True
YPE YPR 4936 0.1812 0.1812 False
YPL YPR 1585 0.0000 0.0000 True

shortest path length
total length

group1 group2 stat p-val p-val corr. reject

YPD YPE 3713 0.0001 0.0003 True
YPD YPL 2867 0.0000 0.0000 True
YPD YPR 3733 0.0116 0.0230 True
YPE YPL 5094 0.0025 0.0074 True
YPE YPR 4608 0.0471 0.0471 True
YPL YPR 3634 0.0000 0.0000 True

shortest path length
Num. of edges

group1 group2 stat p-val p-val corr. reject

YPD YPE 4257 0.0064 0.0190 True
YPD YPL 2202 0.0000 0.0000 True
YPD YPR 4038 0.0695 0.1342 False
YPE YPL 3175 0.0000 0.0000 True
YPE YPR 4959 0.1956 0.1956 False
YPL YPR 2404 0.0000 0.0000 True
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Cell coef.var. ΔΨ scl.
group1 group2 stat p-val p-val corr. reject

YPD YPE 5199 0.3825 0.7645 False
YPD YPL 4822 0.0381 0.1440 False
YPD YPR 4597 0.4891 0.7645 False
YPE YPL 5130 0.0031 0.0184 True
YPE YPR 5205 0.3878 0.7645 False
YPL YPR 4699 0.0203 0.0974 False

Cell coef.var. ΔΨ raw
group1 group2 stat p-val p-val corr. reject

YPD YPE 1650 0.0000 0.0000 True
YPD YPL 1870 0.0000 0.0000 True
YPD YPR 1781 0.0000 0.0000 True
YPE YPL 5628 0.0411 0.1184 False
YPE YPR 4623 0.0506 0.1184 False
YPL YPR 5527 0.4216 0.4216 False

Cell GFP intensity
group1 group2 stat p-val p-val corr. reject

YPD YPE 549 0.0000 0.0000 True
YPD YPL 1519 0.0000 0.0000 True
YPD YPR 698 0.0000 0.0000 True
YPE YPL 3851 0.0000 0.0000 True
YPE YPR 4235 0.0055 0.0092 True
YPL YPR 4451 0.0046 0.0092 True

Branchpoints ΔΨ scl.
group1 group2 stat p-val p-val corr. reject

YPD YPE 5074 0.2776 0.6231 False
YPD YPL 4272 0.0013 0.0080 True
YPD YPR 4441 0.3327 0.6231 False
YPE YPL 5076 0.0022 0.0110 True
YPE YPR 5233 0.4130 0.6231 False
YPL YPR 4344 0.0022 0.0110 True

Branchpoints ΔΨ raw
group1 group2 stat p-val p-val corr. reject

YPD YPE 617 0.0000 0.0000 True
YPD YPL 1338 0.0000 0.0000 True
YPD YPR 906 0.0000 0.0000 True
YPE YPL 4277 0.0000 0.0000 True
YPE YPR 4100 0.0021 0.0043 True
YPL YPR 5017 0.0906 0.0906 False
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Betweenness centrality
group1 group2 stat p-val p-val corr. reject

YPD YPE 4862 0.1394 0.3626 False
YPD YPL 5600 0.4862 0.4862 False
YPD YPR 3885 0.0302 0.1421 False
YPE YPL 5669 0.0489 0.1819 False
YPE YPR 4953 0.1918 0.3626 False
YPL YPR 4475 0.0054 0.0320 True

Closeness centrality
group1 group2 stat p-val p-val corr. reject

YPD YPE 5027 0.2422 0.5648 False
YPD YPL 2962 0.0000 0.0000 True
YPD YPR 4543 0.4335 0.5648 False
YPE YPL 3748 0.0000 0.0000 True
YPE YPR 5107 0.3040 0.5648 False
YPL YPR 2900 0.0000 0.0000 True

Clustering coeff.
group1 group2 stat p-val p-val corr. reject

YPD YPE 5328 0.4995 0.7690 False
YPD YPL 5523 0.4179 0.7690 False
YPD YPR 4373 0.2694 0.7340 False
YPE YPL 6350 0.3865 0.7690 False
YPE YPR 5015 0.2327 0.7340 False
YPL YPR 4951 0.0685 0.3468 False

Edge mito avg. ΔΨ scl.
group1 group2 stat p-val p-val corr. reject

YPD YPE 5152 0.3415 0.7010 False
YPD YPL 4523 0.0073 0.0379 True
YPD YPR 4573 0.4643 0.7010 False
YPE YPL 5354 0.0111 0.0436 True
YPE YPR 5140 0.3313 0.7010 False
YPL YPR 4502 0.0064 0.0379 True

Edge mito avg. ΔΨ raw
group1 group2 stat p-val p-val corr. reject

YPD YPE 626 0.0000 0.0000 True
YPD YPL 1390 0.0000 0.0000 True
YPD YPR 922 0.0000 0.0000 True
YPE YPL 4237 0.0000 0.0000 True
YPE YPR 4105 0.0022 0.0044 True
YPL YPR 4990 0.0811 0.0811 False
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Edge mito coeff.var. ΔΨ scl.
group1 group2 stat p-val p-val corr. reject

YPD YPE 3959 0.0007 0.0029 True
YPD YPL 5290 0.2335 0.4125 False
YPD YPR 3635 0.0058 0.0172 True
YPE YPL 4064 0.0000 0.0000 True
YPE YPR 5107 0.3040 0.4125 False
YPL YPR 3808 0.0000 0.0001 True

Edge mito coeff.var. ΔΨ raw
group1 group2 stat p-val p-val corr. reject

YPD YPE 798 0.0000 0.0000 True
YPD YPL 763 0.0000 0.0000 True
YPD YPR 1062 0.0000 0.0000 True
YPE YPL 6399 0.4251 0.4251 False
YPE YPR 4368 0.0128 0.0254 True
YPL YPR 4441 0.0043 0.0130 True

Edge mito std. ΔΨ scl.
group1 group2 stat p-val p-val corr. reject

YPD YPE 3805 0.0002 0.0012 True
YPD YPL 4684 0.0187 0.0551 False
YPD YPR 3670 0.0074 0.0294 True
YPE YPL 5207 0.0049 0.0242 True
YPE YPR 4894 0.1566 0.2363 False
YPL YPR 5103 0.1261 0.2363 False

Edge mito std. ΔΨ raw.
group1 group2 stat p-val p-val corr. reject

YPD YPE 836 0.0000 0.0000 True
YPD YPL 1951 0.0000 0.0000 True
YPD YPR 1165 0.0000 0.0000 True
YPE YPL 4064 0.0000 0.0000 True
YPE YPR 4167 0.0035 0.0069 True
YPL YPR 4750 0.0266 0.0266 True

Mito avg. edge length
group1 group2 stat p-val p-val corr. reject

YPD YPE 4696 0.0709 0.1979 False
YPD YPL 4616 0.0128 0.0501 False
YPD YPR 4243 0.1719 0.3142 False
YPE YPL 4125 0.0000 0.0000 True
YPE YPR 5029 0.2437 0.3142 False
YPL YPR 4033 0.0002 0.0010 True
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Nearest neigh. deg.
group1 group2 stat p-val p-val corr. reject

YPD YPE 3394 0.0000 0.0000 True
YPD YPL 2456 0.0000 0.0000 True
YPD YPR 2964 0.0000 0.0000 True
YPE YPL 4936 0.0009 0.0026 True
YPE YPR 5119 0.3134 0.3134 False
YPL YPR 4545 0.0084 0.0167 True

ΔI(k=1)
group1 group2 stat p-val p-val corr. reject

YPD YPE 3590 0.0000 0.0002 True
YPD YPL 3950 0.0001 0.0005 True
YPD YPR 3598 0.0044 0.0174 True
YPE YPL 5918 0.1240 0.2327 False
YPE YPR 4712 0.0760 0.2112 False
YPL YPR 5372 0.2932 0.2932 False

Mean tube width
group1 group2 stat p-val p-val corr. reject

YPD YPE 3568 0.0000 0.0001 True
YPD YPL 4103 0.0004 0.0015 True
YPD YPR 2472 0.0000 0.0000 True
YPE YPL 6184 0.2674 0.2674 False
YPE YPR 4456 0.0213 0.0421 True
YPL YPR 4415 0.0037 0.0109 True

Table B.2: Ordinary Least Square regression test for surface density and average degree of network.
Note the interaction term between surface density and respiratory/fermentative conditions has
a statistically significant difference (Slope Density = regression slope for fermentation, Slope
Dens.:fermt[T.resp.] = interaction term representing how different the slope in respiration is from
fermentation). This indicates that the regression slope between surface density and average degree
changes depending on the respiratory state of the population.

Dep. Variable: mtnetwork avg deg R-squared: 0.251
Model: OLS Adj. R-squared: 0.246
Method: Least Squares F-statistic: 45.58
Date: Sun, 15 Nov 2015 Prob (F-statistic): 2.01 × 10−25

Time: 18:42:03 Log-Likelihood: −4.9669
No. Observations: 412 AIC: 17.93
Df Residuals: 408 BIC: 34.02
Df Model: 3

coef. std. err. t P> |t| 95% Conf. Int.
Intercept 1.444 0.136 10.599 0.000 1.176 1.712
fermt.[T.resp.] 0.250 0.148 1.684 0.093 −0.042 0.542
Slope Density 2.101 0.476 4.412 0.000 1.165 3.038
Slope Dens.:fermt[T.resp.] −1.328 0.484 −2.743 0.006 −2.279 −0.376
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Appendix C

Database variables

Table C.1: list of variables

Variable name Length scale Explanation
’bin’ cell scale grouping bins for bud ratio
’bud’ cell scale bud ΔΨ
’budratio’ cell scale ratio of bud length to mother length
’budvol’ cell scale bud volume
’budvolbins cell scale grouping bins for bud volumes
’cell_coefvar_r’ cell scale coefficient of variation for ΔΨ raw
’cell_coefvar’ cell scale coefficient of variation for ΔΨ scaled
’charpl_norm_len’ cell scale shortest path length /total length
’charpl_norm_numedge’ cell scale shortest path length /number edges
’Dyneck’ cell scale ΔΨ at bud neck
’frac’ cell scale bud ΔΨ /mom ΔΨ ratio
’mito_beta_geo’ cell scale β𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐
’mito_beta_top’ cell scale β𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙
’mito_cell_ave_gfp’ cell scale cell average GFP
’mito_cell_ave_rfp’ cell scale cell average GFP
’mito_cell_avedy’ cell scale cell average ΔΨ
’mito_cell_avedyr’ cell scale cell average ΔΨ raw
’mito_cell_stddy’ cell scale cell standard deviation ΔΨ
’mito_cell_stddyr’ cell scale cell standard deviation ΔΨ raw
’mito_cell_w’ cell scale cell RFP width equivalent
’mito_charpl_uw’ cell scale shortest path length
’mito_charpl_w’ cell scale shortest path length weighted

Continued on next page
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Table C.1 – continued from previous page
Variable name Length scale Explanation
’mito_clscntr_uw’ cell scale closeness cent.
’mito_clscntr_w’ cell scale closeness cent. weighted
’mito_clstcf_uw’ cell scale clustering coef.
’mito_clstcf_w’ cell scale clustering coef. weighted
’mito_knn_uw’ cell scale nearest neighbor degree of cell
’mito_knn_w’ cell scale nearest neighbor degree of cell weighted
’mito_φ’ cell scale cell φ
’mito_pk3’ cell scale cell Pk3
’mito_totlen’ cell scale total mitochondrial length
’mom’ cell scale mom ΔΨ
’momvol’ cell scale mom cell volume
’neck’ cell scale bud neck location
’Quasik’ cell scale surface density
’Vol Ratio’ cell scale volume ratio
’mito_avgdeg’ cell scale average degree cell
’Surface area’ cell scale surface area of cell
mito_cell_avedyr’ cell scale mean ΔΨ
’media’ metadata carbon source
’type’ metadata carbon source
’index’ metadata cell ID
’branchpoint_avgdeg’ network scale branchpoint average degree
’branchpoint_beta_geo’ network scale branchpoint β𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐
’branchpoint_beta_top’ network scale branchpoint β𝑡𝑜𝑝𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙
’branchpoint_edgenum’ network scale number of edges around branchpoint
’branchpoint_knn_uw’ network scale branchpoint nearest neighbor degree
’branchpoint_φ’ network scale branchpoint φ
’branchpoint_pk3’ network scale branchpoint Pk3
’branchpoint_tubew’ network scale branchpoint tubule width
’mito_bootbpts_dyraw’ network scale bootstrapped branchpoint ΔΨ
’mito_bptcoefvar_raw’ network scale branchpoint ΔΨ coefficient of variation
’mito_bpts_ΔΨ’ network scale branchpoint mean ΔΨ scaled
’mito_bpts_dyraw’ network scale branchpoint mean ΔΨ raw
’mito_btwcntr_uw’ network scale branchpoint mean betweenness cent.
’mito_btwcntr_w’ network scale branchpoint mean betweenness cent. weighted
’Number of Edges’ population scale average number of edges for population
’Number of Nodes’ population scale average number of nodes for population
’O2 per mito vol’ population scale OCR per mito vol
’OCR per cell mass’ population scale OCR per mass
’OCR per cell numbers’ population scale OCR per 107 cells

Continued on next page
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Table C.1 – continued from previous page
Variable name Length scale Explanation
ΔΨ Unscaled’ population scale ΔΨ of population
’mitolen’ population scale mean length of population
’mitovol’ population scale mean vol of population
’lags_1’ tubule scale Δ𝐼(𝑘 = 1)
’mito_edge_avedy’ tubule scale tubule mean ΔΨ
’mito_edge_avedyr’ tubule scale tubule mean ΔΨ raw
’mito_edge_coefvar’ tubule scale coefficient of variation ΔΨ tubule
’mito_edge_coefvarr’ tubule scale coefficient of variation ΔΨ tubule raw
’mito_edge_stddy’ tubule scale standard deviation ΔΨ tubule
’mito_edge_stddyr’ tubule scale standard deviation ΔΨ tubule raw
’mito_edgelen’ tubule scale tubule mean length
’mito_edgenum’ tubule scale tubule mean numbers
’mito_nodenum’ tubule scale node mean numbers
’mito_iso_dyr’ tubule scale isolated fragment ΔΨ
’mito_iso_len’ tubule scale isolated fragment length
’mito_tubew’ tubule scale tubule mean width
’mito_widcoef’ tubule scale correlation coeff. of tubule width with matrix signal
’mito_widcoefDY’ tubule scale correlation coeff. of tubule width with ΔΨ
’autocor’ tubule scale autocor coeff
’Delta inten’ tubule scale Δ𝐼(𝑘)
’psd tubule scale power spectral density
lineid’ tubule scale tubule ID
Threshold length tubule scale threshold length
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Appendix D

Source codes

Listed here are a selection of source codes used in this thesis.

D.1 Structure-function pipeline modules

These three modules represent the source codes used to generate the structure-function

map of the mitochondrial network.

"""
First step in pipeline, creates 'raw' vtk files before normalizing

"""
import vtk

5 import glob
import string
import os
import numpy as np

10 radius = 2.5 # radius of averaging
b = os.getcwd()
fskel = glob.glob(b+'\\'+'*RFP*skel*')
fVR = glob.glob(b+'\\'+'*RFP*resample*')
fVG = glob.glob(b+'\\'+'*GFP*resample*') # GFP voxels

15 media = b.rsplit('\\', 1)
# pylint: enable=C0103
for x in range(len(fskel)):
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print'now on cell:%3d' % x
reader = vtk.vtkPolyDataReader()

20 reader.SetFileName(fskel[x])
reader.Update()
reader2 = vtk.vtkStructuredPointsReader()
reader2.SetFileName(fVG[x])
reader2.Update()

25 reader3 = vtk.vtkStructuredPointsReader()
reader3.SetFileName(fVR[x])
reader3.Update()
dataSkel = reader.GetOutput() # Skel coords value from skel file
dataGFPV = reader2.GetOutput() # voxels GFP

30 dataRFPV = reader3.GetOutput()
maxR = dataRFPV.GetPointData().GetScalars().GetRange()[1]
minR = dataRFPV.GetPointData().GetScalars().GetRange()[0]
maxG = dataGFPV.GetPointData().GetScalars().GetRange()[1]
minG = dataGFPV.GetPointData().GetScalars().GetRange()[0]

35 ptsOld = dataSkel.GetPoints()
Cell = vtk.vtkCellArray()
dim = dataRFPV.GetDimensions()
intenGFP = dataGFPV.GetPointData().GetScalars().GetTuple1
intenRFP = dataRFPV.GetPointData().GetScalars().GetTuple1

40 skelWidth = dataSkel.GetPointData().GetScalars('Width')
loc = vtk.vtkPointLocator()
loc.SetDataSet(dataGFPV)
loc.BuildLocator()
result = vtk.vtkIdList()

45 rawRFP = vtk.vtkDoubleArray()
rawRFP.SetName("rRFP")
rawGFP = vtk.vtkDoubleArray()
rawGFP.SetName("rGFP")

50 # add the lines/ cells for connectivity of skel info

for i in range(dataSkel.GetNumberOfLines()):
oldL = dataSkel.GetCell(i).GetPoints()
ptID = dataSkel.GetCell(i).GetPointIds()

55

oldPt = [
oldL.GetPoint(idx) for idx in range(oldL.GetNumberOfPoints())]

oldId = [
60 ptID.GetId(pid) for pid in range(ptID.GetNumberOfIds())]

Cell.InsertNextCell(len(oldId))

for j in oldId:
65 Cell.InsertCellPoint(j)

# averaging of pts intensity value surrounding each point in skel
for n in range(dataSkel.GetNumberOfPoints()):

70 ptOI = tuple(np.ceil(i/.055) for i in dataSkel.GetPoint(n))
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loc.FindPointsWithinRadius(radius, ptOI, result)

voxID = [
75 result.GetId(i) for i in range(result.GetNumberOfIds())]

g = np.mean([intenGFP(m) for m in voxID])
rawGFP.InsertNextValue(g)

80 r = np.mean([intenRFP(m) for m in voxID])
rawRFP.InsertNextValue(r)

polyData = vtk.vtkPolyData()
polyData.SetPoints(ptsOld)

85 polyData.SetLines(Cell)
polyData.GetPointData().AddArray(rawRFP)
polyData.GetPointData().AddArray(rawGFP)
polyData.GetPointData().AddArray(skelWidth)

90 list1 = []
writer = vtk.vtkPolyDataWriter()

fileName = fskel[x].rsplit('\\', 1)[1]
fileString = os.path.join(

95 os.getcwd(), string.join(
(str(radius), 'raw', fileName), sep='_'))

writer = vtk.vtkPolyDataWriter()
writer.SetFileName(fileString)

100 writer.SetInput(polyData)
writer.Update()

"""
Build vtk skel files with normalized values for DY using TVTK

"""
import glob

5 import os
import numpy as np
import cPickle as pickle
from tvtk.api import tvtk
# pylint: disable=C0103

10 backgroundGFP = {}
backgroundRFP = {}
Type = {}
Dates = {}
minmaxRFP = []

15 minmaxGFP = []
dates = []
bckgrndGFP = []
bckgrndRFP = []
parDir = os.path.dirname(os.getcwd())

20 parparDir = os.path.dirname(parDir)
b = os.getcwd()
files = glob.glob(os.getcwd()+'\\*vtk')
with open(parparDir+'\\'+'fileMetas.pkl', 'rb') as inpt:

s = pickle.load(inpt)
25 # pylint: enable=C0103
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for i in s:
backgroundRFP[i] = s[i][0]
backgroundGFP[i] = s[i][1]

30

# Read raw vtk files as input
for a in range(len(files)):

print"working..."
reader = tvtk.PolyDataReader()

35 reader.set(file_name=files[a])
reader.update()
data = reader.output
temp = data.point_data
rawGFP = np.ravel(temp.get_array('rGFP'))

40 rawRFP = np.ravel(temp.get_array('rRFP'))
tubeWidth = np.ravel(temp.get_array('Width'))
fileKey = files[a].rsplit('\\', 1)[1][:-13]
minmaxRFP.append((min(rawRFP), max(rawRFP)))
minmaxGFP.append((min(rawGFP), max(rawGFP)))

45 if backgroundRFP[fileKey] > minmaxRFP[a][0]:

# ensures minimum values of 1 to avoid big divisions
minA = minmaxRFP[a][0]-1

else:
50 # ensures minimum values of 1 to avoid big divisions

minA = backgroundRFP[fileKey]-1

minB = min(backgroundGFP[fileKey], minmaxGFP[a][0])
bckgrndGFP.append(minB)

55 bckgrndRFP.append(minA)

# Normalize
pts = data.points
lns = data.lines

60 pointIds = []
lines = []

# method for getting pointIds as unique list
for el in range(data.number_of_lines):

temp = np.ravel(data.get_cell(el).point_ids)
65 lines.append(temp)

pointIds = np.unique([el for ln in lines for el in ln])

# background Substract
A = rawRFP-minA

70 B = rawGFP-minB
minAb = np.min(A)

# width equivalent
W = A/minAb

# raw DY/W normalized values
75 DY = B/W

# rescale DY to minmax
minDY = min([DY[i] for i in pointIds])
maxDY = max([DY[i] for i in pointIds])
normDY = ((DY-minDY)/(maxDY-minDY))

80

# Make VTK file
polyData = tvtk.PolyData()
polyData.points = pts
polyData.lines = lns

85 polyData.point_data.scalars = normDY
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polyData.point_data.scalars.name = 'DY_minmax'
polyData.point_data.add_array(W)
polyData.point_data.get_array(1).name = 'WidthEq'
polyData.point_data.add_array(DY)

90 polyData.point_data.get_array(2).name = 'DY_raw'
polyData.point_data.add_array(rawRFP)
polyData.point_data.get_array(3).name = 'rRFP'
polyData.point_data.add_array(rawGFP)
polyData.point_data.get_array(4).name = 'rGFP'

95 polyData.point_data.add_array(A)
polyData.point_data.get_array(5).name = 'bkstRFP'
polyData.point_data.add_array(B)
polyData.point_data.get_array(6).name = 'bkstGFP'
polyData.point_data.update()

100 polyData.point_data.add_array(tubeWidth)
polyData.point_data.get_array(7).name = 'tubeWidth'
polyData.point_data.update()

# Output
writer = tvtk.PolyDataWriter()

105 fileString = os.getcwd()+'\\Norm_'+fileKey+'_skeleton.vtk'
writer = tvtk.PolyDataWriter()
writer.set(file_name=fileString)
writer.set_input(polyData)
writer.update()

110 print"done!"

"""
This module returns edgeslist,nodelist and graph objects from VTK files

"""
import vtk

5 import glob
import math
import numpy as np
import networkx as nx
import cPickle as pickle

10 import os

def disteuc(pt1, pt2):
"""returns euclidian dist btw pt1 and pt2

15 """
return math.sqrt(vtk.vtkMath.Distance2BetweenPoints(pt1, pt2))

# pylint: disable=C0103
fileloc = os.getcwd()+'\\'+'Norm*vtk'

20 fileglb = glob.glob(fileloc)
lab = fileglb[0].rsplit('\\', 1)[1][5:8]
print 'creating edge node lists for %s' % lab
print'number of files = %3d' % len(fileglb)

25 # INITIALIZE
nnodes = 0
G = [] # list container for graphs of each cell
EDL = []
X = []

30 Y = []
files = fileglb
reader = vtk.vtkPolyDataReader()
# pylint: enable=C0103
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35 for a in range(len(files)):
# for a in range(len(files)):
reader.SetFileName(files[a])
reader.Update()
data = reader.GetOutput()

40 scalars = data.GetPointData().GetScalars("DY_raw")
num_lines = data.GetNumberOfLines()
fname = files[a].rsplit('\\', 1)[1][5:-13]
G.append(nx.MultiGraph(cell=fname))

45 # for every line in each cell, starting from the highest index compare the
# end points of that line with another line of the next lower index, if
# pythagorean dist==0, label it a node and add it to the graph object G[a]

for i in range(num_lines-1, -1, -1):
line1 = data.GetCell(i).GetPoints()

50 np_pointsi = line1.GetNumberOfPoints()
pointID = data.GetCell(i).GetPointIds()
exist1 = exist2 = False
r1 = line1.GetPoint(0)
r2 = line1.GetPoint(np_pointsi-1)

55 inten1 = scalars.GetTuple1(pointID.GetId(0))
inten2 = scalars.GetTuple1(pointID.GetId(np_pointsi-1))

for j in range(i+1):
line2 = data.GetCell(j).GetPoints()

60 np_pointsj = line2.GetNumberOfPoints()
s1 = line2.GetPoint(0)
s2 = line2.GetPoint(np_pointsj-1)

# compare same line, will identify a line of zero length if true
65 if i == j:

d = disteuc(r1, r2)
if d == 0:

exist2 = True
else:

70 d = disteuc(r1, s1)
if d == 0:

exist1 = True
d = disteuc(r1, s2)
if d == 0:

75 exist1 = True
d = disteuc(r2, s1)
if d == 0:

exist2 = True
d = disteuc(r2, s2)

80 if d == 0:
exist2 = True

if exist1 is False:
G[a].add_node(nnodes, coord=r1, inten=inten1)
nnodes += 1

85 if exist2 is False:
G[a].add_node(nnodes, coord=r2, inten=inten2)
nnodes += 1

# for every node identified in the list of nnodes, compare each line in
# that cell with that node to identify the edges

90 for i in range(num_lines):
EDL = 0
line1 = data.GetCell(i).GetPoints()
np_pointsi = line1.GetNumberOfPoints()
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r1 = line1.GetPoint(0)
95 r2 = line1.GetPoint(np_pointsi-1)

pointID = data.GetCell(i).GetPointIds()
mdpt = (

(r1[0]+r2[0]) / 2, (r1[1]+r2[1]) / 2, (r1[2]+r2[2]) / 2)

100 # for each line sum thru the line the distance between points to
# get edge len EDL

EDL = np.sum(
[disteuc(line1.GetPoint(pid), line1.GetPoint(pid-1))
for pid in range(1, np_pointsi)])

105

for j in G[a].nodes_iter():
nod = G[a].node[j]
r = nod['coord']
d = disteuc(r, r1)

110 if d == 0:
n1 = j

d = disteuc(r, r2)
if d == 0:

n2 = j
115 G[a].add_edge(

n1, n2, weight=EDL, cellID=i, midpoint=mdpt)

# OUTPUT number of nodes,edges, and total Length
deg = nx.degree(G[a])

120 for i in G[a].nodes_iter():
G[a].node[i]['degree'] = deg[i]

x = G[a].nodes(data=True)
X.append(x)
y = G[a].edges(data=True)

125 Y.append(y)

OUT = (X, Y, G)
media = os.getcwd().rsplit('\\', 1)
FILENAME = os.path.join(os.getcwd(), '%s_grph.pkl' % media[1])

130 with open(FILENAME, 'wb') as OUTPUT:
pickle.dump(OUT, OUTPUT)

D.2 Multi-scale database module

"""
Calculate the statistical and topological measures of interest of cells
in various carbon sources and munge it into dataframe

"""
5 import os

import fnmatch
import numpy as np
from tvtk.api import tvtk
import networkx as nx

10 import scipy.stats as sp
import matplotlib.pyplot as plt
from collections import defaultdict
from mungedata import MungeDataFuncs as md
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import pandas as pd
15 import cPickle as pickle

from numpy.random import choice as samp_no_rep
plt.close('all')

# init vars and get vtk, graph data
20 vtkF = {}

G = {}
backgroundGFP = {}
backgroundRFP = {}
parDir = os.path.dirname(os.getcwd())

25 for root, dirs, files in os.walk(os.getcwd()):
for i in files:

if fnmatch.fnmatch(i, '*vtk'):
vtkF.setdefault(root.rsplit('\\', 1)[1], []).append(

os.path.join(root, i))
30 if fnmatch.fnmatch(i, '*grph.pkl'):

G.setdefault(root.rsplit('\\', 1)[1], []).append(
os.path.join(root, i))

media = sorted(vtkF.keys())
35 # pylint: enable=C0103

# networkX graph objects of mitograph
for i in G:

with open(G[i][0], 'rb') as inpt:
40 temp = pickle.load(inpt)[2]

G[i].append(temp)

# get metadatas
with open(parDir+'\\'+'fileMetas.pkl', 'rb') as inpt:

45 METAS = pickle.load(inpt)
for i in METAS:

backgroundRFP[i] = METAS[i][0]
backgroundGFP[i] = METAS[i][1]

50 # begin pipeline
mito_avgdeg = defaultdict(dict)
mito_bpts_dy = defaultdict(dict)
mito_bpts_dyraw = defaultdict(dict)
mito_bptcoefvar_raw = defaultdict(dict)

55 mito_btwcntr_uw = defaultdict(dict)
mito_btwcntr_w = defaultdict(dict)
mito_cell_avedy = defaultdict(dict)
mito_cell_avedyr = defaultdict(dict)
mito_cell_stddy = defaultdict(dict)

60 mito_cell_stddyr = defaultdict(dict)
mito_charpl_uw = defaultdict(dict)
mito_charpl_w = defaultdict(dict)
mito_clscntr_uw = defaultdict(dict)
mito_clscntr_w = defaultdict(dict)

65 mito_clstcf_uw = defaultdict(dict)
mito_clstcf_w = defaultdict(dict)
mito_edge_avedy = defaultdict(dict)
mito_edge_avedyr = defaultdict(dict)
mito_edge_coefvar = defaultdict(dict)

70 mito_edge_coefvarr = defaultdict(dict)
mito_edge_stddy = defaultdict(dict)
mito_edge_stddyr = defaultdict(dict)
mito_edgelen = defaultdict(dict)
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mito_edgenum = defaultdict(dict)
75 mito_knn_uw = defaultdict(dict)

mito_knn_w = defaultdict(dict)
mito_beta_top = defaultdict(dict)
mito_beta_geo = defaultdict(dict)
mito_phi = defaultdict(dict)

80 mito_pk3 = defaultdict(dict)
mito_totlen = defaultdict(dict)
mito_widcoef = defaultdict(dict)
mito_widcoefDY = defaultdict(dict)
mito_cell_ave_gfp = defaultdict(dict)

85 mito_cell_ave_rfp = defaultdict(dict)
mito_cell_w = defaultdict(dict)
mito_iso_dyr = defaultdict(dict)
mito_bootbpts_dyraw = defaultdict(dict)
mito_tubew = defaultdict(dict)

90 cnnsub = nx.connected_component_subgraphs
avg_shpthl = nx.average_shortest_path_length
avg_nnd = nx.average_neighbor_degree

for mem in media:
95 print'\nNow on %s\n' % mem + "=" * 79

for n, a in enumerate(vtkF[mem]):
Norm = []
NormRaw = []
GFP = []

100 RFP = []
arrPts = []
W = []
W2 = []
rGFP = []

105 lineId = {}

curGrph = G[mem][1][n]
reader = tvtk.PolyDataReader()
reader.set(file_name=a)

110 reader.update()
data = reader.output
scalarsNorm = data.point_data.scalars
temp = data.point_data
dyRaw = np.ravel(temp.get_array('DY_raw'))

115 rawGFP = np.ravel(temp.get_array('rGFP'))
rawRFP = np.ravel(temp.get_array('rRFP'))
WidthEq = np.ravel(temp.get_array('WidthEq'))
tubeWidth = np.ravel(temp.get_array('tubeWidth'))
filekey = a.rsplit('\\', 1)[1][5:][:-13]

120

if backgroundRFP[filekey] > min(rawRFP):
minA = backgroundRFP[filekey]-1

else:
minA = backgroundRFP[filekey]-1

125 minB = min(backgroundGFP[filekey], min(rawGFP))

# Convert multigraph to graph for clustering coef calc (choose long edges)
GG = nx.Graph()
for n, nbrs in curGrph.adjacency_iter():

130 for nbr, attr in nbrs.items():
maxvalue = max([d['weight'] for d in attr.values()])
GG.add_edge(n, nbr, weight=maxvalue)
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# get btps intensity value within radofinfluence
135 branchpoints = {j: attr['coord'] for j, attr

in curGrph.nodes(data=True)
if attr['degree'] > 2}

bptpid = md.bpts_inten(data, branchpoints)
140 bptdy = {key: np.mean([scalarsNorm[el] for el in vals])

for key, vals in sorted(bptpid.iteritems())}

bptdy_raw = {key: np.mean([dyRaw[el] for el in vals])
for key, vals in sorted(bptpid.iteritems())}

145

bptcoefvar_raw = {key: sp.variation([dyRaw[el] for el in vals])
for key, vals in sorted(bptpid.iteritems())}

# make bootstrapped btps and bootstrap dyraw around rad of influence
150 bpids = np.unique([el for lis in bptpid.values() for el in lis])

allids = {i: np.array(data.get_cell(i).point_ids) for i
in range(data.number_of_lines)}

nonbpids = np.unique([el for lis in allids.values() for el
in lis if el not in bpids])

155

bootbp = defaultdict(dict)
nboot = 100 # number of replicates for bootstrap
for n in range(nboot):

bootbp[n] = {}
160 for k, v in bptpid.items():

bootbp[n][k] = samp_no_rep(nonbpids,
size=len(v),
replace=False)

mean_bs = {}
165 for key in bptpid.keys():

mean_bs[key] = [np.mean([dyRaw[el] for el
in bootbp[n][key]]) for n

in range(nboot)]
bootbpdy_raw = {key: np.mean(vals) for key, vals

170 in mean_bs.iteritems()}

# get the line of interest
for line in range(data.number_of_lines):

cellIds = list(data.get_cell(line).point_ids)
175 Norm.append([scalarsNorm[cid] for cid in cellIds])

NormRaw.append([dyRaw[cid] for cid in cellIds])
GFP.append([rawGFP[cid] for cid in cellIds])
RFP.append([rawRFP[cid] for cid in cellIds])
W.append([WidthEq[cid] for cid in cellIds])

180

dedges = {(a, b, eattr['cellID']): eattr['weight'] for a, b, eattr
in curGrph.edges(data=True)} # edgelists

node_btwcent = nx.betweenness_centrality(curGrph)
node_clscent = nx.closeness_centrality(curGrph)

185 anndeg = avg_nnd(curGrph, nodes=branchpoints) # bpts nearest ngbr deg
lc = nx.clustering(GG)
lcW = nx.clustering(GG, weight='weight')
cc = nx.average_clustering(GG) # clus. coef of graph
k3 = len(branchpoints) # number of nodes deg == 3

190 # weighted by edgelens versions
node_btwcentW = nx.betweenness_centrality(curGrph,

weight='weight')
node_clscentW = nx.closeness_centrality(curGrph,
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distance='weight')
195 anndeg_w = avg_nnd(curGrph, nodes=branchpoints,

weight='weight')
ccW = nx.average_clustering(GG, weight='weight')

conncomps = [cnn for cnn in cnnsub(curGrph)]
200 largest_cnn = conncomps[np.argmax([g.number_of_edges() for g

in cnnsub(curGrph)])]
# smallest_cnn = conncomps[np.argmin([g.number_of_edges() for g
# in cnnsub(curGrph)])]

isocnn = [a for a in conncomps if len(a.edges()) == 1]
205

# isoedgecid = [eattr['cellID'] for n1, n2, eattr
# in smallest_cnn.edges(data=True)][0]
# isoedgepid = data.get_cell(isoedgecid).point_ids

isoedgecid = [eattr['cellID'] for subg
210 in isocnn for n1, n2, eattr

in subg.edges(data=True)]
isoedgepid = {cid: np.array(data.get_cell(cid).point_ids) for cid

in isoedgecid}

215 # these are the stats of interest

# Topology
# make sure the edges are returned in the same order as DY (by cellid)

220 x = {i[2]: dedges[i] for i in dedges.keys()}

mito_edgelen[filekey] = [x[key] for key in sorted(x.keys())]

mito_totlen[filekey] = np.sum(mito_edgelen[filekey])
225

mito_edgenum[filekey] = curGrph.number_of_edges()

for line in isoedgepid:
mito_iso_dyr[filekey][line] = [dyRaw[pid] for pid

230 in isoedgepid[line]]
# Function

mito_edge_avedy[filekey] = [
np.mean(el) for el in Norm] # per cell

235 mito_edge_stddy[filekey] = [
np.std(el) for el in Norm] # per cell!

mito_edge_avedyr[filekey] = [
np.mean(el) for el in NormRaw]

240

mito_edge_stddyr[filekey] = [
np.std(el) for el in NormRaw]

mito_edge_coefvar[filekey] = [
245 np.std(el)/np.mean(el) for el in Norm]

mito_edge_coefvarr[filekey] = [
np.std(el)/np.mean(el) for el in NormRaw]

250 mito_cell_avedy[filekey] = np.mean(scalarsNorm)

mito_cell_avedyr[filekey] = np.mean(dyRaw)
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mito_cell_stddy[filekey] = np.std(scalarsNorm)
255

mito_cell_stddyr[filekey] = np.std(dyRaw)

mito_bpts_dy[filekey] = [bptdy[key] for key
in sorted(branchpoints)]

260

mito_bpts_dyraw[filekey] = [bptdy_raw[key] for key
in sorted(branchpoints)]

mito_bptcoefvar_raw[filekey] = [bptcoefvar_raw[key] for key
in sorted(branchpoints)]

265 mito_bootbpts_dyraw[filekey] = [bootbpdy_raw[key] for key
in sorted(branchpoints)]

mito_cell_ave_gfp[filekey] = np.mean(rawGFP-minB)
mito_cell_ave_rfp[filekey] = np.mean(rawRFP-minA)

270 mito_cell_w[filekey] = np.mean(WidthEq)
mito_tubew[filekey] = np.mean(tubeWidth)

# Connectivity
mito_widcoef[filekey] = sp.pearsonr(rawRFP, tubeWidth)
mito_widcoefDY[filekey] = sp.pearsonr(dyRaw, tubeWidth)

275

mito_btwcntr_uw[filekey] = [node_btwcent[key] for key
in sorted(branchpoints)] # per cell!

mito_clscntr_uw[filekey] = [node_clscent[key] for key
280 in sorted(branchpoints)] # per cell

mito_knn_uw[filekey] = [anndeg[key] for key # nearest neighb conn
in sorted(branchpoints)]

285 mito_clstcf_uw[filekey] = [lc[key] for key
in sorted(branchpoints)]

mito_charpl_uw[filekey] = np.max(
[avg_shpthl(g) for g in cnnsub(curGrph)

290 if len(g) > 1])

# Connectivity weighted by length
mito_btwcntr_w[filekey] = [node_btwcentW[key] for key

in sorted(branchpoints)] # per cell!
295

mito_clscntr_w[filekey] = [node_clscentW[key] for key
in sorted(branchpoints)] # per cell

mito_knn_w[filekey] = [anndeg_w[key] for key
300 in sorted(branchpoints)] # nrst nb. conn.

mito_clstcf_w[filekey] = [lcW[key] for key
in sorted(branchpoints)]

305 mito_charpl_w[filekey] = np.max(
[avg_shpthl(g, weight='weight') for g in cnnsub(curGrph)
if len(g) > 1])

mito_phi[filekey] = (1. * largest_cnn.number_of_nodes() /
310 curGrph.number_of_nodes())

mito_beta_top[filekey] = (1. * largest_cnn.number_of_edges() /
curGrph.number_of_edges())
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315 mito_beta_geo[filekey] = (np.sum([eattr['weight'] for e, f, eattr
in largest_cnn.edges(data=True)]) /

mito_totlen[filekey])

mito_pk3[filekey] = 1. * k3 / curGrph.number_of_nodes()
320

mito_avgdeg[filekey] = (2. * curGrph.number_of_edges() /
curGrph.number_of_nodes())

D.3 Mother-daughter transformation module

"""
Transform and visualize cells along the mother bud axis

"""
import os

5 import numpy as np
from mayavi import mlab
import fnmatch
import pandas as pd
from tvtk.api import tvtk

10 from collections import defaultdict
from vtk_viz import vtkvizfuncs as vz
import cPickle as pickle
vtkF = defaultdict(dict)
mombud = defaultdict(dict)

15

# filelist and graph list
for root, dirs, files in os.walk(os.getcwd()):

for i in files:
if fnmatch.fnmatch(i, '*skeleton.vtk'):

20 media = root.rsplit('\\', 1)[1]
vtkF[media][i[5:-13]] = os.path.join(root, i)

if fnmatch.fnmatch(i, 'YP*csv'):
mombud[i[:-4]] = os.path.join(root, i)

25 filekeys = {item: vtkF[media][item] for media
in sorted(vtkF.keys()) for item
in sorted(vtkF[media].keys())}

DataSize = pd.read_table('Results.txt')
30 df = DataSize.ix[:, 1:]

df['cell'] = df.ix[:, 'Label'].apply(lambda x: x.partition(':')[2])
df['vol'] = 4/3 * np.pi * (df.Major*.055/2) * (df.Minor*.055/2) ** 2

# Draw cell using cellplot and edgeplot
35

if __name__ == "__main__":
dfmb = pd.DataFrame(columns=['base','neck','tip','media'])
mlab.close(all=True)
for _, key in enumerate(sorted(mombud.keys())[-5:-4]):

40 df1 = pd.read_csv('%s.csv' % key,
header=0,
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names=['x', 'y', 'z'],
index_col=0)

tip = np.array(df1.ix['tip'])
45 base = np.array(df1.ix['base'])

neck = np.array(df1.ix['neck'])

filekey = key
df2 = vz.getelipspar(filekey, df)

50 df2 = df2.sort('vol')
df2.reset_index(drop=True, inplace=True)
df2.index = ['bud', 'mom']
df2['center'] = zip((df2.X - 25)*.055, (225 - df2.Y)*.055)
figone = mlab.figure(figure=filekey,

55 size=(800, 600),
bgcolor=(0., 0., 0.))

figone.scene.disable_render = True
_, vtkobj, tubeout = vz.cellplot(figone, filekeys, filekey)

60 xmin, xmax, ymin, ymax, zmin, zmax = vtkobj.outputs[0].bounds

# zposition of center slice
try:

zp = df1.ix['centerpt'][0]
65 except KeyError:

zp = (zmax-zmin)/2

vz.adjustlut(tubeout)
vz.drawelips('mom', df2, zpos=zp)

70 vz.drawelips('bud', df2, zpos=zp)

# get orientation vector defining mom bud axis

tr, rot, scale1 = vz.arrowvect(base, tip, neck)
75 arrsource = tvtk.ArrowSource(shaft_radius=.01,

shaft_resolution=18,
tip_length=.15,
tip_radius=.05,
tip_resolution=18)

80 transformPD = tvtk.TransformPolyDataFilter()
transformPD = tvtk.TransformPolyDataFilter(input=arrsource.output,

transform=tr)

# All the transformations objects
85 # ccw 90 rotation and TR to mother bud coord system (for 2nd arrow)

ccw90 = np.eye(4)
ccw90[0, 0] = 0
ccw90[1, 1] = 0
ccw90[0, 1] = -1

90 ccw90[1, 0] = 1
trans1 = tvtk.Transform()
trans1.set_matrix(ccw90.flatten())
trans1.scale(1/3., 1/3., 1/3.)
trans1.post_multiply()

95 trans1.concatenate(tr)

# inverse transfrom from mother bud coords to cartesian coord
trans2 = tvtk.Transform()
rot.transpose()

100 trans2.translate(-base)
trans2.post_multiply() # translate, THEN rotate
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trans2.concatenate(rot)
trans2.translate([-1, 0, 0])

105 # transform to scale and translate default arrowsource
trans3 = tvtk.Transform()
trans3.scale(scale1, scale1, scale1)
trans3.post_multiply()
trans3.translate([-1, 0, 0])

110

# transform for second arrow (rotates 90ccw) at origin
trans4 = tvtk.Transform()
trans4.scale(scale1/3, scale1/3, scale1/3)
trans4.post_multiply()

115 trans4.concatenate(ccw90.flatten())
trans4.translate([-1, 0, 0])

# Draw all the transformed data
# mother bud axis arrow in mother bud coord system

120 arr_mombud = mlab.pipeline.surface(transformPD.output,
figure=figone,
opacity=.33)

# second arrow, perpendicular to arr_mombud
a2act = mlab.pipeline.surface(arrsource.output,

125 figure=figone,
opacity=.33)

a2act.actor.actor.user_transform = trans1

tippt = tvtk.SphereSource(center=tip, radius=.15)
130 mlab.pipeline.surface(tippt.output,

figure=figone,
color=(.3, 1., .3),
opacity=.33)

basept = tvtk.SphereSource(center=base, radius=.15)
135 mlab.pipeline.surface(basept.output,

figure=figone,
color=(.1, .3, 1),
opacity=.33)

neckpt = tvtk.SphereSource(center=neck, radius=.15)
140 mlab.pipeline.surface(neckpt.output,

figure=figone,
color=(1, .1, .1),
opacity=.33)

145 cell_t = tvtk.TransformPolyDataFilter(input=vtkobj.outputs[0],
transform=trans2).output

mom_t, _ = vz.drawelips('mom', df2, zpos=zp)
bud_t, _ = vz.drawelips('bud', df2, zpos=zp)
mom_t.actor.actor.user_transform = trans2

150 bud_t.actor.actor.user_transform = trans2

# transform the arrows and spheres in mombud axis coords back to origin
arr_mombud_t = mlab.pipeline.surface(arrsource.output,

figure=figone,
155 opacity=0.33)

arr_mombud_t.actor.actor.user_transform = trans3
a2act_t = mlab.pipeline.surface(arrsource.output,

figure=figone,
opacity=0.33)

160 a2act_t.actor.actor.user_transform = trans4
base_t = mlab.pipeline.surface(basept.output,
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figure=figone,
color=(.1, .3, 1),
opacity=0.33)

165 tip_t = mlab.pipeline.surface(tippt.output,
figure=figone,
opacity=0.33,
color=(.3, 1., .3))

neck_t = mlab.pipeline.surface(neckpt.output,
170 figure=figone,

color=(1, .1, .1),
opacity=.33)

neck_t.actor.actor.user_transform = trans2
base_t.actor.actor.user_transform = trans2

175 tip_t.actor.actor.user_transform = trans2
dftemp=pd.Series({'base':base_t.actor.actor.center,

'neck':neck_t.actor.actor.center,
'tip':tip_t.actor.actor.center,
'media':key[:3],

180 'bud': df2.ix['bud','vol'],
'mom': df2.ix['mom','vol']},
name=key)

# mlab.close(all=True)
dfmb = dfmb.append(dftemp)

185

# THIS IS THE TRANSFORMED CELL VTK POLYDATA THAT WE WANT!!
cell_t2 = mlab.pipeline.surface(cell_t, figure=figone)
cell_t2.actor.mapper.scalar_visibility = True
cell_t2.module_manager.lut_data_mode = 'point data'

190 vz.adjustlut(cell_t2)
figone.scene.disable_render = False
mlab.view(0, 0, 180)
mlab.view(distance='auto')

# w = tvtk.PolyDataWriter(input=cell_t, file_name='%s.vtk' % key)
195 # w.write()

with open('mombudtrans.pkl','wb') as output:
pickle.dump(dfmb, output)

172


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Mitochondrial structure
	Mitochondrial function
	The link between structure and function in mitochondrial remodeling
	Pathological consequences of mitochondrial damage
	Motivation and goal of thesis
	Budding yeast as a model organism for studying structure-function relationship
	Overview of thesis

	Structure-function mapping pipeline
	Introduction
	Development of a structure function mapping pipeline

	Materials and Methods
	Spinning disk microscopy platform
	Strain construction for visualization of matrix structure
	Cell preparation and loading of functional dye
	Image microscopy pipeline
	Data preparation before input into pipeline
	Artifacts that may arise when mapping ΔΨ to mitochondrial network
	Pipeline to map ΔΨ to mitochondrial network with normalization and scaling to control artifacts
	Data wrangling – database structure


	Modulating metabolic state
	Introduction
	Parameters of the OXPHOS process
	Mitochondrial membrane potential (ΔΨ) as a bioenergetic indicator
	Oxygen consumption measurement of cellular respiration
	Variation of carbon source substrates and their expected bioenergetic measurements

	Materials and Methods
	O2 consumption rate measurement using a Clark electrode
	OCR measurement protocols

	Results
	Discussion

	Membrane potential heterogeneity at the mitochondrial tubule level
	Introduction
	Materials and Methods
	Sampling of random distributions
	Autocorrelation curves
	Power spectral density
	Delta intensity DIk
	Statistical testing with post-hoc multiple testing correction

	Results
	Mitochondrial tubules have nonrandom heterogeneity of ΔΨ
	Mitochondrial tubules in respiratory conditions have less correlation of ΔΨ at large length scales compared to fermentative conditions
	Mitochondrial tubules in respiratory conditions have thicker width and more uniform distribution of thickness compared to fermentative conditions

	Discussion

	Membrane potential heterogeneity at the mitochondrial network level
	Introduction
	Materials and Methods
	Data structure
	Surface density as a measure of spatial density of mitochondria
	Global and local measures of connectivity
	Statistical testing between conditions

	Results
	Mitochondrial surface density scales with network connectivity
	Mitochondrial surface density does not correlate with ΔΨ or connectivity
	Mitochondria with similar surface densities do not show a difference in correlation with ΔΨ or connectivity measures
	Branchpoint regions have similar ΔΨ to non branchpoint regions
	ΔΨ of isolated mitochondrial fragments are no different from the rest of the network 

	Discussion

	Membrane potential heterogeneity at the cellular level
	Introduction
	Materials and Methods
	Picking of points to define the mother-bud axis
	Direction cosine based transformation matrix to realign the mother-bud cellular axis
	Tracking functional heterogeneity during budding progression

	Results
	Buds have mitochondria with higher ΔΨ compared to mother cells
	Mitochondria display different gradients of ΔΨ along the mother-bud axis
	Mitochondrial ΔΨ asymmetry is maintained during the budding progression

	Discussion

	Significance and future direction
	Significance
	Improved spatial resolution
	Genetically encoded functional sensors
	Refinement in experimental setup

	Bibliography
	Supplementary figures
	Statistical tables
	Database variables
	Source codes
	Structure-function pipeline modules
	Multi-scale database module
	Mother-daughter transformation module


